IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i16p6343-d395611.html
   My bibliography  Save this article

The Selection of Green Technology Innovations under Dual-Credit Policy

Author

Listed:
  • Ziyue Wang

    (Business School, Hohai University, Nanjing 211100, China)

  • Juan Zhang

    (Business School, Hohai University, Nanjing 211100, China)

  • Huiju Zhao

    (Office of Informatization Construction Management, Nanjing University of Finance and Economics, Nanjing 210023, China)

Abstract

In the pressure of excessive resource consumption and serious environmental pollution, government in China proposed a dual-credit policy to promote the production of green vehicles, such as energy-saving fuel vehicle (FV) and electric vehicle (EV). This study explores the firm’s selection of green technology innovations (GTIs) under dual-credit policy, including the energy-saving technology for FV and the technology for producing EV. We found that the firm’s technology capacity of improving the energy-saving level of FV plays an important role in affecting the firm’s selections of GTIs. Specifically, when the technology capacity is moderate, the firm chooses both types of GTIs to produce both EV and energy-saving FV, otherwise he will choose one type only. Moreover, no matter which GTI is selected by the firm, its pricing and environmental efforts decisions keep the same. With the dual-credit policy, we found that it could encourage the production of the EV under certain conditions. Besides this, increasing the green credit of EV can align the economic and environmental interests while increasing standard energy consumption has conflicts in both interests. In particular, when the firm offers FV only or both EV and FV, increasing the price of credit has conflicting interests in economy and environment. However, when the firm offers EV only, increasing the price of credit could improve the firm’s profit without hurting the environment.

Suggested Citation

  • Ziyue Wang & Juan Zhang & Huiju Zhao, 2020. "The Selection of Green Technology Innovations under Dual-Credit Policy," Sustainability, MDPI, vol. 12(16), pages 1-22, August.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:16:p:6343-:d:395611
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/16/6343/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/16/6343/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tan, R.R. & Aviso, K.B. & Ng, D.K.S., 2019. "Optimization models for financing innovations in green energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. Xiaoxue Zheng & Haiyan Lin & Zhi Liu & Dengfeng Li & Carlos Llopis-Albert & Shouzhen Zeng, 2018. "Manufacturing Decisions and Government Subsidies for Electric Vehicles in China: A Maximal Social Welfare Perspective," Sustainability, MDPI, vol. 10(3), pages 1-28, March.
    3. Jung, Seung Hwan & Feng, Tianjun, 2020. "Government subsidies for green technology development under uncertainty," European Journal of Operational Research, Elsevier, vol. 286(2), pages 726-739.
    4. Li, Guangpei & Wang, Xiaoyu & Su, Shibin & Su, Yuan, 2019. "How green technological innovation ability influences enterprise competitiveness," Technology in Society, Elsevier, vol. 59(C).
    5. Li, Yaoming & Zhang, Qi & Liu, Boyu & McLellan, Benjamin & Gao, Yuan & Tang, Yanyan, 2018. "Substitution effect of New-Energy Vehicle Credit Program and Corporate Average Fuel Consumption Regulation for Green-car Subsidy," Energy, Elsevier, vol. 152(C), pages 223-236.
    6. Kangda Chen & Fuquan Zhao & Han Hao & Zongwei Liu, 2018. "Synergistic Impacts of China’s Subsidy Policy and New Energy Vehicle Credit Regulation on the Technological Development of Battery Electric Vehicles," Energies, MDPI, vol. 11(11), pages 1-19, November.
    7. Gu, Xiaoyu & Ieromonachou, Petros & Zhou, Li, 2019. "Subsidising an electric vehicle supply chain with imperfect information," International Journal of Production Economics, Elsevier, vol. 211(C), pages 82-97.
    8. Ou, Shiqi & Lin, Zhenhong & Qi, Liang & Li, Jie & He, Xin & Przesmitzki, Steven, 2018. "The dual-credit policy: Quantifying the policy impact on plug-in electric vehicle sales and industry profits in China," Energy Policy, Elsevier, vol. 121(C), pages 597-610.
    9. Niu, Baozhuang & Jin, Delong & Pu, Xujin, 2016. "Coordination of channel members’ efforts and utilities in contract farming operations," European Journal of Operational Research, Elsevier, vol. 255(3), pages 869-883.
    10. Yang Gao & Sang-Bing Tsai & Xingqun Xue & Tingzhen Ren & Xiaomin Du & Quan Chen & Jiangtao Wang, 2018. "An Empirical Study on Green Innovation Efficiency in the Green Institutional Environment," Sustainability, MDPI, vol. 10(3), pages 1-13, March.
    11. Li, Jizi & Ku, Yaoyao & Yu, Yue & Liu, Chunling & Zhou, Yuping, 2020. "Optimizing production of new energy vehicles with across-chain cooperation under China’s dual credit policy," Energy, Elsevier, vol. 194(C).
    12. Jungwoo Shin & Taehoon Lim & Moo Yeon Kim & Jae Young Choi, 2018. "Can Next-Generation Vehicles Sustainably Survive in the Automobile Market? Evidence from Ex-Ante Market Simulation and Segmentation," Sustainability, MDPI, vol. 10(3), pages 1-16, February.
    13. Chen, Wenbo, 2018. "Retailer-driven carbon emission abatement with consumer environmental awareness and carbon tax: Revenue-sharing versus Cost-sharingAuthor-Name: Yang, Huixiao," Omega, Elsevier, vol. 78(C), pages 179-191.
    14. Wei-yu Kevin Chiang & Dilip Chhajed & James D. Hess, 2003. "Direct Marketing, Indirect Profits: A Strategic Analysis of Dual-Channel Supply-Chain Design," Management Science, INFORMS, vol. 49(1), pages 1-20, January.
    15. Luo, Zheng & Chen, Xu & Kai, Ming, 2018. "The effect of customer value and power structure on retail supply chain product choice and pricing decisions," Omega, Elsevier, vol. 77(C), pages 115-126.
    16. Yi Zheng & Gaoxun Zhang & Weiwei Zhang, 2018. "A Duopoly Manufacturers’ Game Model Considering Green Technology Investment under a Cap-and-Trade System," Sustainability, MDPI, vol. 10(3), pages 1-11, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Xie & Jie Wu & Hannian Zhi & Muhammad Riaz & Liangpeng Wu, 2023. "A Study on the Evolution of Competition in China’s Auto Market Considering Market Capacity Constraints and a Game Payoff Matrix: Based on the Dual Credit Policy," Sustainability, MDPI, vol. 15(4), pages 1-24, February.
    2. Kai Wu & E Bai & Hejie Zhu & Zhijiang Lu & Hongxin Zhu, 2023. "Can Green Credit Policy Promote the High-Quality Development of China’s Heavily-Polluting Enterprises?," Sustainability, MDPI, vol. 15(11), pages 1-27, May.
    3. Ma, Haicheng & Lou, Gaoxiang & Fan, Tijun & Chan, Hing Kai & Chung, Sai Ho, 2021. "Conventional automotive supply chains under China's dual-credit policy: fuel economy, production and coordination," Energy Policy, Elsevier, vol. 151(C).
    4. Liangui Peng & Ying Li & Hui Yu, 2021. "Effects of Dual Credit Policy and Consumer Preferences on Production Decisions in Automobile Supply Chain," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    5. Ma, Miaomiao & Meng, Weidong & Huang, Bo & Li, Yuyu, 2023. "The influence of dual credit policy on new energy vehicle technology innovation under demand forecast information asymmetry," Energy, Elsevier, vol. 271(C).
    6. Kelei Xue & Guohua Sun & Yuyan Wang & Shuiye Niu, 2021. "Optimal Pricing and Green Product Design Strategies in a Sustainable Supply Chain Considering Government Subsidy and Different Channel Power Structures," Sustainability, MDPI, vol. 13(22), pages 1-26, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lian Ding & Xiaodong Zhu, 2023. "The Impact of the Dual-Credit Policy on Production and Cooperative R&D in the Automotive Supply Chain," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
    2. Ma, Haicheng & Lou, Gaoxiang & Fan, Tijun & Chan, Hing Kai & Chung, Sai Ho, 2021. "Conventional automotive supply chains under China's dual-credit policy: fuel economy, production and coordination," Energy Policy, Elsevier, vol. 151(C).
    3. Cheng, Yongwei & Fan, Tijun, 2021. "Production coopetition strategies for an FV automaker and a competitive NEV automaker under the dual-credit policy," Omega, Elsevier, vol. 103(C).
    4. Fan, Zhi-Ping & Cao, Yue & Huang, Chun-Yong & Li, Yongli, 2020. "Pricing strategies of domestic and imported electric vehicle manufacturers and the design of government subsidy and tariff policies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    5. Meng, Weidong & Ma, Miaomiao & Li, Yuyu & Huang, Bo, 2022. "New energy vehicle R&D strategy with supplier capital constraints under China's dual credit policy," Energy Policy, Elsevier, vol. 168(C).
    6. Wu, Fulan & Li, Pei & Dong, Xuebing & Lu, Yuanzhu, 2022. "Exploring the effectiveness of China's dual credit policy in a differentiated automobile market when some consumers are environmentally aware," Energy Economics, Elsevier, vol. 111(C).
    7. Nie, Qingyun & Zhang, Lihui & Li, Songrui, 2022. "How can personal carbon trading be applied in electric vehicle subsidies? A Stackelberg game method in private vehicles," Applied Energy, Elsevier, vol. 313(C).
    8. Jizi Li & Yuping Zhou & Dengke Yu & Chunling Liu, 2020. "Consumers’ Purchase Intention of New Energy Vehicles: Do Product-Life-Cycle Policy Portfolios Matter?," Sustainability, MDPI, vol. 12(5), pages 1-23, February.
    9. Ying Xie & Jie Wu & Hannian Zhi & Muhammad Riaz & Liangpeng Wu, 2023. "A Study on the Evolution of Competition in China’s Auto Market Considering Market Capacity Constraints and a Game Payoff Matrix: Based on the Dual Credit Policy," Sustainability, MDPI, vol. 15(4), pages 1-24, February.
    10. Liukai Yu & Xuehai Jiang & Yujie He & Yangyang Jiao, 2022. "Promoting the Diffusion of New Energy Vehicles under Dual Credit Policy: Asymmetric Competition and Cooperation in Complex Network," Energies, MDPI, vol. 15(15), pages 1-20, July.
    11. Kangda Chen & Fuquan Zhao & Han Hao & Zongwei Liu & Xinglong Liu, 2021. "Hierarchical Optimization Decision-Making Method to Comply with China’s Fuel Consumption and New Energy Vehicle Credit Regulations," Sustainability, MDPI, vol. 13(14), pages 1-25, July.
    12. Jun-bin Wang & Lufei Huang, 2021. "A Game-Theoretic Analytical Approach for Fostering Energy-Saving Innovation in the Electric Vehicle Supply Chain," SAGE Open, , vol. 11(2), pages 21582440211, June.
    13. Liangui Peng & Ying Li & Hui Yu, 2021. "Effects of Dual Credit Policy and Consumer Preferences on Production Decisions in Automobile Supply Chain," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    14. Juan Zhang & Ziyue Wang & Huiju Zhao, 2020. "The Impact of Consumer Subsidy on Green Technology Innovations for Vehicles and Environmental Impact," IJERPH, MDPI, vol. 17(20), pages 1-24, October.
    15. Zhao, Dan & Ji, Shou-feng & Wang, He-ping & Jiang, Li-wen, 2021. "How do government subsidies promote new energy vehicle diffusion in the complex network context? A three-stage evolutionary game model," Energy, Elsevier, vol. 230(C).
    16. Fuquan Zhao & Kangda Chen & Han Hao & Zongwei Liu, 2020. "Challenges, Potential and Opportunities for Internal Combustion Engines in China," Sustainability, MDPI, vol. 12(12), pages 1-15, June.
    17. Dong-Xiao Yang & Lei Yang & Xiao-Ling Chen & Chan Wang & Pu-Yan Nie, 2023. "Research on credit pricing mechanism in dual-credit policy: is the government in charge or is the market in charge?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1561-1581, February.
    18. Ma, Miaomiao & Meng, Weidong & Li, Yuyu & Huang, Bo, 2023. "Impact of dual credit policy on new energy vehicles technology innovation with information asymmetry," Applied Energy, Elsevier, vol. 332(C).
    19. Mingyue Wang & Junbi Zhou & Xiaojin Xia & Zitong Wang, 2022. "The Mixed Impact of Environmental Regulations and External Financing Constraints on Green Technological Innovation of Enterprise," IJERPH, MDPI, vol. 19(19), pages 1-18, September.
    20. Li, Xin & Wu, Ming & Shi, Chunming & Chen, Yan, 2023. "Impacts of green credit policies and information asymmetry: From market perspective," Resources Policy, Elsevier, vol. 81(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:16:p:6343-:d:395611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.