IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i12p4936-d372662.html
   My bibliography  Save this article

Comparison between Two Strategies for the Collection of Wheat Residue after Mechanical Harvesting: Performance and Cost Analysis

Author

Listed:
  • Alessandro Suardi

    (Consiglio per la Ricerca in Agricoltura e l’analisi dell’Economia Agraria (CREA)-Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via della Pascolare, 16, 00015 Monterotondo (RM), Italy)

  • Walter Stefanoni

    (Consiglio per la Ricerca in Agricoltura e l’analisi dell’Economia Agraria (CREA)-Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via della Pascolare, 16, 00015 Monterotondo (RM), Italy)

  • Simone Bergonzoli

    (Consiglio per la Ricerca in Agricoltura e l’analisi dell’Economia Agraria (CREA)-Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via Milano, 43, 24047 Treviglio (BG), Italy)

  • Francesco Latterini

    (Consiglio per la Ricerca in Agricoltura e l’analisi dell’Economia Agraria (CREA)-Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via della Pascolare, 16, 00015 Monterotondo (RM), Italy)

  • Nils Jonsson

    (Research Institutes of Sweden (RISE), Ultunaallén 4, 756 51 Uppsala, Sweden)

  • Luigi Pari

    (Consiglio per la Ricerca in Agricoltura e l’analisi dell’Economia Agraria (CREA)-Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via della Pascolare, 16, 00015 Monterotondo (RM), Italy)

Abstract

The growing population worldwide will create the demand for higher cereal production, in order to meet the food need of both humans and animals in the future. Consequently, the quantity of crop by-products produced by cereal cropping will increase accordingly, providing a good opportunity for fostering the development of the sustainable supply chain of renewable solid fuels and natural feedstock for animal farming. The conventional machineries used in wheat harvesting do not guarantee the possibility to collect the chaff as additional residue to the straw. The present study investigated the possibility to equip a conventional combine with a specific device, already available on the market, in order to collect the chaff either separately (onto a trailer), or together with the straw (baled). The total residual biomass increased by 0.84 t·ha −1 and 0.80 t·ha −1 respectively, without negatively affecting the performance of the combine when the chaff was discharged on the swath. Farmers can benefit economically from the extra biomass collected, although a proper sizing of the machine chain is fundamental to avoid by-product losses and lower revenue.

Suggested Citation

  • Alessandro Suardi & Walter Stefanoni & Simone Bergonzoli & Francesco Latterini & Nils Jonsson & Luigi Pari, 2020. "Comparison between Two Strategies for the Collection of Wheat Residue after Mechanical Harvesting: Performance and Cost Analysis," Sustainability, MDPI, vol. 12(12), pages 1-17, June.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:12:p:4936-:d:372662
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/12/4936/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/12/4936/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang Yang & Shaoqiang Ma & Yi Zhao & Ming Jing & Yongqiang Xu & Jiawei Chen, 2015. "A Field Experiment on Enhancement of Crop Yield by Rice Straw and Corn Stalk-Derived Biochar in Northern China," Sustainability, MDPI, vol. 7(10), pages 1-13, October.
    2. Štěpán Hýsek & Jaroslav Čermák & Martin Lexa, 2019. "Influence of Lignocellulosic Waste Pre-Treatment on the Characteristics of Bond Rupture," Sustainability, MDPI, vol. 11(17), pages 1-16, September.
    3. Simone Bergonzoli & Alessandro Suardi & Negar Rezaie & Vincenzo Alfano & Luigi Pari, 2020. "An Innovative System for Maize Cob and Wheat Chaff Harvesting: Simultaneous Grain and Residues Collection," Energies, MDPI, vol. 13(5), pages 1-15, March.
    4. Christoph Glasner & Christopher Vieregge & Josef Robert & Johanna Fenselau & Zahra Bitarafan & Christian Andreasen, 2019. "Evaluation of New Harvesting Methods to Reduce Weeds on Arable Fields and Collect a New Feedstock," Energies, MDPI, vol. 12(9), pages 1-13, May.
    5. Alessandro Suardi & Sergio Saia & Walter Stefanoni & Carina Gunnarsson & Martin Sundberg & Luigi Pari, 2020. "Admixing Chaff with Straw Increased the Residues Collected without Compromising Machinery Efficiencies," Energies, MDPI, vol. 13(7), pages 1-14, April.
    6. Ákos Mesterházy & Judit Oláh & József Popp, 2020. "Losses in the Grain Supply Chain: Causes and Solutions," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    7. Jessica Eise & Kenneth Alan Foster (ed.), 2018. "How to Feed the World," Springer Books, Springer, number 978-1-61091-885-5, September.
    8. Paiano, Annarita & Lagioia, Giovanni, 2016. "Energy potential from residual biomass towards meeting the EU renewable energy and climate targets. The Italian case," Energy Policy, Elsevier, vol. 91(C), pages 161-173.
    9. Jacobs, A. & Kingwell, R., 2016. "The Harrington Seed Destructor: Its role and value in farming systems facing the challenge of herbicide-resistant weeds," Agricultural Systems, Elsevier, vol. 142(C), pages 33-40.
    10. Patience Afi Seglah & Yajing Wang & Hongyan Wang & Yuyun Bi, 2019. "Estimation and Efficient Utilization of Straw Resources in Ghana," Sustainability, MDPI, vol. 11(15), pages 1-25, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alfredo de Toro & Carina Gunnarsson & Nils Jonsson & Martin Sundberg, 2021. "Effects of Variable Weather Conditions on Baled Proportion of Varied Amounts of Harvestable Cereal Straw, Based on Simulations," Sustainability, MDPI, vol. 13(16), pages 1-23, August.
    2. Walter Stefanoni & Francesco Latterini & Javier Prieto Ruiz & Simone Bergonzoli & Consuelo Attolico & Luigi Pari, 2020. "Mechanical Harvesting of Camelina: Work Productivity, Costs and Seed Loss Evaluation," Energies, MDPI, vol. 13(20), pages 1-14, October.
    3. Walter Stefanoni & Francesco Latterini & Javier Prieto Ruiz & Simone Bergonzoli & Nadia Palmieri & Luigi Pari, 2020. "Assessing the Camelina ( Camelina sativa (L.) Crantz) Seed Harvesting Using a Combine Harvester: A Case-Study on the Assessment of Work Performance and Seed Loss," Sustainability, MDPI, vol. 13(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Suardi & Walter Stefanoni & Vincenzo Alfano & Simone Bergonzoli & Luigi Pari, 2020. "Equipping a Combine Harvester with Turbine Technology Increases the Recovery of Residual Biomass from Cereal Crops via the Collection of Chaff," Energies, MDPI, vol. 13(7), pages 1-14, March.
    2. Francesco Latterini & Walter Stefanoni & Alessandro Suardi & Vincenzo Alfano & Simone Bergonzoli & Nadia Palmieri & Luigi Pari, 2020. "A GIS Approach to Locate a Small Size Biomass Plant Powered by Olive Pruning and to Estimate Supply Chain Costs," Energies, MDPI, vol. 13(13), pages 1-17, July.
    3. Luigi Pari & Francesco Latterini & Walter Stefanoni, 2020. "Herbaceous Oil Crops, a Review on Mechanical Harvesting State of the Art," Agriculture, MDPI, vol. 10(8), pages 1-25, July.
    4. Walter Stefanoni & Francesco Latterini & Javier Prieto Ruiz & Simone Bergonzoli & Consuelo Attolico & Luigi Pari, 2020. "Mechanical Harvesting of Camelina: Work Productivity, Costs and Seed Loss Evaluation," Energies, MDPI, vol. 13(20), pages 1-14, October.
    5. Walter Stefanoni & Francesco Latterini & Javier Prieto Ruiz & Simone Bergonzoli & Nadia Palmieri & Luigi Pari, 2020. "Assessing the Camelina ( Camelina sativa (L.) Crantz) Seed Harvesting Using a Combine Harvester: A Case-Study on the Assessment of Work Performance and Seed Loss," Sustainability, MDPI, vol. 13(1), pages 1-11, December.
    6. Walter Stefanoni & Francesco Latterini & Luigi Pari, 2023. "Perennial Grass Species for Bioenergy Production: The State of the Art in Mechanical Harvesting," Energies, MDPI, vol. 16(5), pages 1-12, February.
    7. Adrián Csordás & Péter Lengyel & István Füzesi, 2022. "Who Prefers Regional Products? A Systematic Literature Review of Consumer Characteristics and Attitudes in Short Food Supply Chains," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    8. Alina Vysochyna & Natalia Stoyanets & Grzegorz Mentel & Tadeusz Olejarz, 2020. "Environmental Determinants of a Country’s Food Security in Short-Term and Long-Term Perspectives," Sustainability, MDPI, vol. 12(10), pages 1-15, May.
    9. Deboni, Tamires Liza & Simioni, Flávio José & Brand, Martha Andreia & Costa, Valdeci José, 2019. "Models for estimating the price of forest biomass used as an energy source: A Brazilian case," Energy Policy, Elsevier, vol. 127(C), pages 382-391.
    10. Jinwu Wang & Xiaobo Sun & Yanan Xu & Wenqi Zhou & Han Tang & Qi Wang, 2021. "Timeliness Harvesting Loss of Rice in Cold Region under Different Mechanical Harvesting Methods," Sustainability, MDPI, vol. 13(11), pages 1-18, June.
    11. Pandey, Adya & Bolia, Nomesh B., 2023. "Millet value chain revolution for sustainability: A proposal for India," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
    12. Yong Jee KIM & Brigitte WALDORF & Juan SESMERO, 2020. "Relocation, Retreat, and the Rising Sea Level: A Simulation of Aggregate Outcomes in Escambia County, Florida," Region et Developpement, Region et Developpement, LEAD, Universite du Sud - Toulon Var, vol. 51, pages 31-43.
    13. Jutao Zeng & Jie Lyu, 2023. "Simultaneous Decisions to Undertake Off-Farm Work and Straw Return: The Role of Cognitive Ability," Land, MDPI, vol. 12(8), pages 1-21, August.
    14. Nii Nelson & Jo Darkwa & John Calautit & Mark Worall & Robert Mokaya & Eunice Adjei & Francis Kemausuor & Julius Ahiekpor, 2021. "Potential of Bioenergy in Rural Ghana," Sustainability, MDPI, vol. 13(1), pages 1-16, January.
    15. Grzegorz Maj & Paweł Krzaczek & Wojciech Gołębiowski & Tomasz Słowik & Joanna Szyszlak-Bargłowicz & Grzegorz Zając, 2022. "Energy Consumption and Quality of Pellets Made of Waste from Corn Grain Drying Process," Sustainability, MDPI, vol. 14(13), pages 1-15, July.
    16. Martino, Gaetano & Polinori, Paolo & Bufacchi, Marina & Rossetti, Enrica, 2020. "The biomass potential availability from olive cropping in Italy in a business perspective: Methodological approach and tentative estimates," Renewable Energy, Elsevier, vol. 156(C), pages 526-534.
    17. Thiago Guilherme Péra & Fernando Vinícius da Rocha & José Vicente Caixeta Filho, 2023. "Tracking Food Supply Chain Postharvest Losses on a Global Scale: The Development of the Postharvest Loss Information System," Agriculture, MDPI, vol. 13(10), pages 1-14, October.
    18. Greggio, Nicolas & Balugani, Enrico & Carlini, Carlotta & Contin, Andrea & Labartino, Nicola & Porcelli, Roberto & Quaranta, Marta & Righi, Serena & Vogli, Luciano & Marazza, Diego, 2019. "Theoretical and unused potential for residual biomasses in the Emilia Romagna Region (Italy) through a revised and portable framework for their categorization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 590-606.
    19. Bilandzija, Nikola & Voca, Neven & Jelcic, Barbara & Jurisic, Vanja & Matin, Ana & Grubor, Mateja & Kricka, Tajana, 2018. "Evaluation of Croatian agricultural solid biomass energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 225-230.
    20. Nandimandalam, Hariteja & Gude, Veera Gnaneswar, 2022. "Renewable wood residue sources as potential alternative for fossil fuel dominated electricity mix for regions in Mississippi: A techno-economic analysis," Renewable Energy, Elsevier, vol. 200(C), pages 1105-1119.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:12:p:4936-:d:372662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.