IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i5p1473-d212581.html
   My bibliography  Save this article

Dynamic Changes in Carbon Sequestration from Opencast Mining Activities and Land Reclamation in China’s Loess Plateau

Author

Listed:
  • Boyu Yang

    (School of Land Science and Technology, China University of Geosciences, No. 29, Xueyuan Road, Haidian District, Beijing 100083, China)

  • Zhongke Bai

    (School of Land Science and Technology, China University of Geosciences, No. 29, Xueyuan Road, Haidian District, Beijing 100083, China
    Key Lab of Land Consolidation and Rehabilitation, the Ministry of Natural Resources, Beijing 100035, China)

  • Yingui Cao

    (School of Land Science and Technology, China University of Geosciences, No. 29, Xueyuan Road, Haidian District, Beijing 100083, China
    Key Lab of Land Consolidation and Rehabilitation, the Ministry of Natural Resources, Beijing 100035, China)

  • Feng Xie

    (School of Land Science and Technology, China University of Geosciences, No. 29, Xueyuan Road, Haidian District, Beijing 100083, China)

  • Junjie Zhang

    (School of Land Science and Technology, China University of Geosciences, No. 29, Xueyuan Road, Haidian District, Beijing 100083, China)

  • Yannan Wang

    (School of Land Science and Technology, China University of Geosciences, No. 29, Xueyuan Road, Haidian District, Beijing 100083, China)

Abstract

Opencast coal mining causes serious damage to the natural landscape, resulting in the depletion of the carbon sequestration capacity in the mining activity. There are few studies on the variation of carbon sequestration capabilities caused by land use changes in opencast mining areas. This paper uses six images were used to quantify the changes in land use types from 1986 to 2015 in the Pingshuo mining area in northwest China. At the same time, used statistical analysis and mathematical models to study soil and vegetation carbon sequestration. Results indicate that the total carbon sequestration exhibits a significant downward trend from 4.58 × 10 6 Mg in 1986 to 3.78 × 10 6 Mg in 2015, with the decrease of soil carbon sequestration accounting for the largest proportion. The carbon sequestration of arable land accounted for 51% of the total carbon sequestration in the mining area, followed by grassland (31%) and forestland (18%). Land reclamation contributed to the greatest increase in carbon sequestration of arable land from 17,890.15 Mg (1986) to 27,837.95 Mg (2015). Additionally, the downward trend in the carbon sequestration capacity of the mining ecosystem was mitigated after 2010 as the positive effects of land reclamation gradually amplified over time and as the mining techniques were greatly optimized in recent years in the Pingshuo mining area. Thus, terrestrial carbon sequestration can be improved through land reclamation projects and optimized mining activities. These results can help guide the utilization of reclaimed land in the future.

Suggested Citation

  • Boyu Yang & Zhongke Bai & Yingui Cao & Feng Xie & Junjie Zhang & Yannan Wang, 2019. "Dynamic Changes in Carbon Sequestration from Opencast Mining Activities and Land Reclamation in China’s Loess Plateau," Sustainability, MDPI, vol. 11(5), pages 1-16, March.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:5:p:1473-:d:212581
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/5/1473/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/5/1473/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shao, Shuai & Liu, Jianghua & Geng, Yong & Miao, Zhuang & Yang, Yingchun, 2016. "Uncovering driving factors of carbon emissions from China’s mining sector," Applied Energy, Elsevier, vol. 166(C), pages 220-238.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuai Fu & Zhongke Bai & Boyu Yang & Lijun Xie, 2022. "Study on Ecological Loss in Coal Mining Area Based on Net Primary Productivity of Vegetation," Land, MDPI, vol. 11(7), pages 1-18, July.
    2. Diana Turrión & Luna Morcillo & José Antonio Alloza & Alberto Vilagrosa, 2021. "Innovative Techniques for Landscape Recovery after Clay Mining under Mediterranean Conditions," Sustainability, MDPI, vol. 13(6), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Jiandong & Xu, Chong & Shahbaz, Muhammad & Song, Malin, 2021. "Interaction determinants and projections of China’s energy consumption: 1997–2030," Applied Energy, Elsevier, vol. 283(C).
    2. Hanbin Liu & Yujing Yang & Wenting Jiao & Shaobin Wang & Fangqin Cheng, 2022. "A New Assessment Method for the Redevelopment of Closed Coal Mine—A Case Study in Shanxi Province in China," Sustainability, MDPI, vol. 14(15), pages 1-19, August.
    3. Jialing Zou & Zhipeng Tang & Shuang Wu, 2019. "Divergent Leading Factors in Energy-Related CO 2 Emissions Change among Subregions of the Beijing–Tianjin–Hebei Area from 2006 to 2016: An Extended LMDI Analysis," Sustainability, MDPI, vol. 11(18), pages 1-17, September.
    4. Liang, Wei & Gan, Ting & Zhang, Wei, 2019. "Dynamic evolution of characteristics and decomposition of factors influencing industrial carbon dioxide emissions in China: 1991–2015," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 93-106.
    5. Liu, Jian & Yang, Qingshan & Ou, Suhua & Liu, Jie, 2022. "Factor decomposition and the decoupling effect of carbon emissions in China's manufacturing high-emission subsectors," Energy, Elsevier, vol. 248(C).
    6. Zeng, Lijun & Guo, Jiaqi & Wang, Bingcheng & Lv, Jun & Wang, Qin, 2019. "Analyzing sustainability of Chinese coal cities using a decision tree modeling approach," Resources Policy, Elsevier, vol. 64(C).
    7. Yuan, Rong & Behrens, Paul & Rodrigues, João F.D., 2018. "The evolution of inter-sectoral linkages in China's energy-related CO2 emissions from 1997 to 2012," Energy Economics, Elsevier, vol. 69(C), pages 404-417.
    8. Araya, Natalia & Ramírez, Yendery & Cisternas, Luis A. & Kraslawski, Andrzej, 2021. "Use of real options to enhance water-energy nexus in mine tailings management," Applied Energy, Elsevier, vol. 303(C).
    9. Yunxiu Ma & Zhanjun Xu, 2023. "Construction of Low-Carbon Land Use and Management System in Coal Mining Areas," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    10. Fang, Kai & Zhang, Qifeng & Long, Yin & Yoshida, Yoshikuni & Sun, Lu & Zhang, Haoran & Dou, Yi & Li, Shuai, 2019. "How can China achieve its Intended Nationally Determined Contributions by 2030? A multi-criteria allocation of China’s carbon emission allowance," Applied Energy, Elsevier, vol. 241(C), pages 380-389.
    11. Fang Wan & Jizu Li & Yunfei Han & Xilong Yao, 2024. "Research of the Impact of Hydrogen Metallurgy Technology on the Reduction of the Chinese Steel Industry’s Carbon Dioxide Emissions," Sustainability, MDPI, vol. 16(5), pages 1-24, February.
    12. Yong Wang & Yu Zhou & Lin Zhu & Fei Zhang & Yingchun Zhang, 2018. "Influencing Factors and Decoupling Elasticity of China’s Transportation Carbon Emissions," Energies, MDPI, vol. 11(5), pages 1-29, May.
    13. Ying Han & Baoling Jin & Xiaoyuan Qi & Huasen Zhou, 2021. "Influential Factors and Spatiotemporal Characteristics of Carbon Intensity on Industrial Sectors in China," IJERPH, MDPI, vol. 18(6), pages 1-18, March.
    14. Xilian Wang & Lihang Qu & Yueying Wang & Helin Xie, 2023. "Dynamic Scenario Predictions of Peak Carbon Emissions in China’s Construction Industry," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    15. Zhu, Bangzhu & Ye, Shunxin & Jiang, Minxing & Wang, Ping & Wu, Zhanchi & Xie, Rui & Chevallier, Julien & Wei, Yi-Ming, 2019. "Achieving the carbon intensity target of China: A least squares support vector machine with mixture kernel function approach," Applied Energy, Elsevier, vol. 233, pages 196-207.
    16. Wu, Huijun & Zeng, Xiaoyu & Zhang, Ling & Liu, Xin & Jiang, Songyan & Dong, Zhanfeng & Meng, Xiangrui & Wang, Qianqian, 2023. "Water-energy nexus embedded in coal supply chain of a coal-based city, China," Resources Policy, Elsevier, vol. 85(PA).
    17. Pinjie Xie & Yue Lu & Yuwen Xie, 2024. "The Influencing Factors of Carbon Emissions in the Industrial Sector: Empirical Analysis Based on a Spatial Econometric Model," Sustainability, MDPI, vol. 16(6), pages 1-24, March.
    18. Nie, Wen & Cha, Xingpeng & Bao, Qiu & Peng, Huitian & Xu, Changwei & Zhang, Shaobo & Zhang, Xu & Ma, Qingxin & Guo, Cheng & Yi, Shixing & Jiang, Chenwang, 2023. "Study on dust pollution suppression of mine wind-assisted spray device based on orthogonal test and CFD simulation," Energy, Elsevier, vol. 263(PB).
    19. Wang, Yuan & Zhang, Chen & Lu, Aitong & Li, Li & He, Yanmin & ToJo, Junji & Zhu, Xiaodong, 2017. "A disaggregated analysis of the environmental Kuznets curve for industrial CO2 emissions in China," Applied Energy, Elsevier, vol. 190(C), pages 172-180.
    20. Junliang Yang & Haiyan Shan, 2019. "Identifying Driving Factors of Jiangsu’s Regional Sulfur Dioxide Emissions: A Generalized Divisia Index Method," IJERPH, MDPI, vol. 16(20), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:5:p:1473-:d:212581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.