IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i23p6563-d289149.html
   My bibliography  Save this article

Factors Controlling Urban and Rural Indirect Carbon Dioxide Emissions in Household Consumption: A Case Study in Beijing

Author

Listed:
  • Xueting Jin

    (School of Geographical Sciences & Urban Planning, Arizona State University, Tempe, AZ 85287, USA)

  • Yu Li

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
    College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Dongqi Sun

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China)

  • Jinzhou Zhang

    (School of Geographical Sciences & Urban Planning, Arizona State University, Tempe, AZ 85287, USA)

  • Ji Zheng

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
    College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

Residential carbon dioxide emissions can be divided into a direct component caused by consumers via direct energy usage and an indirect component caused by consumers buying and using products to meet their needs, with a higher proportion caused by the latter. Based on Beijing panel data for 1993–2012, an economic boom period in China, indirect carbon dioxide emissions were separately calculated for urban and rural households using the consumer lifestyle approach (CLA) model. Then, an extended stochastic impact by regression on population, affluence, and technology (STIRPAT) model was used to analyze the influence from two aspects, social economy, and land use, with high precision. Results indicate that indirect CO 2 emissions in Beijing households display a rising trend in urban areas but a slight decrease in rural areas. Technology influences and forest land are, respectively, the most important aspects of the social economy and land use. Higher population and urbanization resulted in enhanced emissions in both urban and rural areas. The Engel coefficient presented a negative correlation with indirect CO 2 emissions for both rural and urban areas. Compared with urban areas, the per capita net income of rural areas restrained consumption. The consumption structure of urban residents was more biased toward the tertiary industry than that of rural residents. Although technical progress has proceeded, it cannot offset urban residents’ indirect CO 2 emissions caused by the large amount and rapid growth of consumption. Regarding land use, urban construction land net primary productivity (NPP) was high and not an important factor contributing to indirect CO 2 emissions. Forest and lawn primarily served a recreational function and exhibited a positive impact. Water and cultivated land offered insufficient production and thus had a negative influence. For rural residents, lawn and cultivated land production is self-sufficient. Forests offer a carbon sequence effect, and construction land expansion increased the proportion of developed area, offering a scale effect that resulted in reduced carbon emissions. Based on the results, alternative carbon emission reduction policies have been proposed for each tested influence aspect to reduce emissions, including policies for optimizing industrialization quality, constructing a medium-density city, increasing space efficiency, encouraging sustainable consumption behavior, and increasing the efficiency of energy utilization.

Suggested Citation

  • Xueting Jin & Yu Li & Dongqi Sun & Jinzhou Zhang & Ji Zheng, 2019. "Factors Controlling Urban and Rural Indirect Carbon Dioxide Emissions in Household Consumption: A Case Study in Beijing," Sustainability, MDPI, vol. 11(23), pages 1-21, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:23:p:6563-:d:289149
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/23/6563/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/23/6563/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liddle, Brantley, 2013. "Urban density and climate change: a STIRPAT analysis using city-level data," Journal of Transport Geography, Elsevier, vol. 28(C), pages 22-29.
    2. Qian Wang & Qiao-Mei Liang & Bing Wang & Fang-Xun Zhong, 2016. "Impact of household expenditures on CO2 emissions in China: Income-determined or lifestyle-driven?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 353-379, November.
    3. Beauchemin, Karen A. & Henry Janzen, H. & Little, Shannan M. & McAllister, Tim A. & McGinn, Sean M., 2010. "Life cycle assessment of greenhouse gas emissions from beef production in western Canada: A case study," Agricultural Systems, Elsevier, vol. 103(6), pages 371-379, July.
    4. Wang, Zhaohua & Yin, Fangchao & Zhang, Yixiang & Zhang, Xian, 2012. "An empirical research on the influencing factors of regional CO2 emissions: Evidence from Beijing city, China," Applied Energy, Elsevier, vol. 100(C), pages 277-284.
    5. Sovacool, Benjamin K. & Brown, Marilyn A., 2010. "Twelve metropolitan carbon footprints: A preliminary comparative global assessment," Energy Policy, Elsevier, vol. 38(9), pages 4856-4869, September.
    6. Bin, Shui & Dowlatabadi, Hadi, 2005. "Corrigendum to "Consumer lifestyles approach to US energy use and the related CO2 emissions": [Energy Policy 33 (2005) 197-208]," Energy Policy, Elsevier, vol. 33(10), pages 1362-1363, July.
    7. Feng, Zhen-Hua & Zou, Le-Le & Wei, Yi-Ming, 2011. "The impact of household consumption on energy use and CO2 emissions in China," Energy, Elsevier, vol. 36(1), pages 656-670.
    8. Tao Lin & Junna Yan, 2017. "Investigating the sensitivity factors of household indirect CO2 emission from the production side," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 721-740, September.
    9. Bjorklund, Johanna & Limburg, Karin E. & Rydberg, Torbjorn, 1999. "Impact of production intensity on the ability of the agricultural landscape to generate ecosystem services: an example from Sweden," Ecological Economics, Elsevier, vol. 29(2), pages 269-291, May.
    10. Bin, Shui & Dowlatabadi, Hadi, 2005. "Consumer lifestyle approach to US energy use and the related CO2 emissions," Energy Policy, Elsevier, vol. 33(2), pages 197-208, January.
    11. Ala-Mantila, Sanna & Heinonen, Jukka & Junnila, Seppo, 2014. "Relationship between urbanization, direct and indirect greenhouse gas emissions, and expenditures: A multivariate analysis," Ecological Economics, Elsevier, vol. 104(C), pages 129-139.
    12. Meangbua, Onicha & Dhakal, Shobhakar & Kuwornu, John K.M., 2019. "Factors influencing energy requirements and CO2 emissions of households in Thailand: A panel data analysis," Energy Policy, Elsevier, vol. 129(C), pages 521-531.
    13. Ishii, Satoshi & Tabushi, Shoichi & Aramaki, Toshiya & Hanaki, Keisuke, 2010. "Impact of future urban form on the potential to reduce greenhouse gas emissions from residential, commercial and public buildings in Utsunomiya, Japan," Energy Policy, Elsevier, vol. 38(9), pages 4888-4896, September.
    14. Marina Alberti, 2005. "The Effects of Urban Patterns on Ecosystem Function," International Regional Science Review, , vol. 28(2), pages 168-192, April.
    15. York, Richard & Rosa, Eugene A. & Dietz, Thomas, 2003. "STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts," Ecological Economics, Elsevier, vol. 46(3), pages 351-365, October.
    16. Giovanni Baiocchi & Jan Minx & Klaus Hubacek, 2010. "The Impact of Social Factors and Consumer Behavior on Carbon Dioxide Emissions in the United Kingdom," Journal of Industrial Ecology, Yale University, vol. 14(1), pages 50-72, January.
    17. van Engelenburg, B. C. W. & van Rossum, T. F. M. & Blok, K. & Vringer, K., 1994. "Calculating the energy requirments of household purchases : A practical step by step method," Energy Policy, Elsevier, vol. 22(8), pages 648-656, August.
    18. Zhang, Ming & Song, Yan & Li, Peng & Li, Huanan, 2016. "Study on affecting factors of residential energy consumption in urban and rural Jiangsu," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 330-337.
    19. Yuan, Baolong & Ren, Shenggang & Chen, Xiaohong, 2015. "The effects of urbanization, consumption ratio and consumption structure on residential indirect CO2 emissions in China: A regional comparative analysis," Applied Energy, Elsevier, vol. 140(C), pages 94-106.
    20. Liddle, Brantley, 2014. "Impact of population, age structure, and urbanization on carbon emissions/energy consumption: Evidence from macro-level, cross-country analyses," MPRA Paper 61306, University Library of Munich, Germany.
    21. Xu, Xinkuo & Han, Liyan & Lv, Xiaofeng, 2016. "Household carbon inequality in urban China, its sources and determinants," Ecological Economics, Elsevier, vol. 128(C), pages 77-86.
    22. Dhakal, Shobhakar, 2009. "Urban energy use and carbon emissions from cities in China and policy implications," Energy Policy, Elsevier, vol. 37(11), pages 4208-4219, November.
    23. C. A. Kennedy & N. Ibrahim & D. Hoornweg, 2014. "Low-carbon infrastructure strategies for cities," Nature Climate Change, Nature, vol. 4(5), pages 343-346, May.
    24. Zhu, Qin & Peng, Xizhe & Wu, Kaiya, 2012. "Calculation and decomposition of indirect carbon emissions from residential consumption in China based on the input–output model," Energy Policy, Elsevier, vol. 48(C), pages 618-626.
    25. Poumanyvong, Phetkeo & Kaneko, Shinji, 2010. "Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis," Ecological Economics, Elsevier, vol. 70(2), pages 434-444, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yueyue Rong & Junsong Jia & Min Ju & Chundi Chen & Yangming Zhou & Yexi Zhong, 2021. "Multi-Perspective Analysis of Household Carbon Dioxide Emissions from Direct Energy Consumption by the Methods of Logarithmic Mean Divisia Index and σ Convergence in Central China," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    2. Chao Hu & Jin Fan & Jian Chen, 2022. "Spatial and Temporal Characteristics and Drivers of Agricultural Carbon Emissions in Jiangsu Province, China," IJERPH, MDPI, vol. 19(19), pages 1-21, September.
    3. Yiping Liu & Yuling Han, 2021. "Impacts of Urbanization and Technology on Carbon Dioxide Emissions of Yangtze River Economic Belt at Two Stages: Based on an Extended STIRPAT Model," Sustainability, MDPI, vol. 13(13), pages 1-18, June.
    4. Zheng Wang & Shaojian Wang & Chuanhao Lu & Lei Hu, 2022. "Which Factors Influence the Regional Difference of Urban–Rural Residential CO 2 Emissions? A Case Study by Cross-Regional Panel Analysis in China," Land, MDPI, vol. 11(5), pages 1-19, April.
    5. Zhou, Qiang & Liu, Yong & Qu, Shen, 2022. "Emission effects of China's rural revitalization: The nexus of infrastructure investment, household income, and direct residential CO2 emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Pedro J. Zarco-Periñán & Fco Javier Zarco-Soto & Irene M. Zarco-Soto & José L. Martínez-Ramos & Rafael Sánchez-Durán, 2022. "CO 2 Emissions in Buildings: A Synopsis of Current Studies," Energies, MDPI, vol. 15(18), pages 1-10, September.
    7. Chen Li & Le Zhang & Qinyi Gu & Jia Guo & Yi Huang, 2022. "Spatio-Temporal Differentiation Characteristics and Urbanization Factors of Urban Household Carbon Emissions in China," IJERPH, MDPI, vol. 19(8), pages 1-22, April.
    8. Mihai Dinu & Simona Roxana Pătărlăgeanu & Radu Petrariu & Marius Constantin & Ana-Mădălina Potcovaru, 2020. "Empowering Sustainable Consumer Behavior in the EU by Consolidating the Roles of Waste Recycling and Energy Productivity," Sustainability, MDPI, vol. 12(23), pages 1-24, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lina Liu & Jiansheng Qu & Afton Clarke-Sather & Tek Narayan Maraseni & Jiaxing Pang, 2017. "Spatial Variations and Determinants of Per Capita Household CO 2 Emissions (PHCEs) in China," Sustainability, MDPI, vol. 9(7), pages 1-19, July.
    2. Wang, Shaojian & Zeng, Jingyuan & Huang, Yongyuan & Shi, Chenyi & Zhan, Peiyu, 2018. "The effects of urbanization on CO2 emissions in the Pearl River Delta: A comprehensive assessment and panel data analysis," Applied Energy, Elsevier, vol. 228(C), pages 1693-1706.
    3. Underwood, Anthony & Fremstad, Anders, 2018. "Does sharing backfire? A decomposition of household and urban economies in CO2 emissions," Energy Policy, Elsevier, vol. 123(C), pages 404-413.
    4. Wang, Qiang & Wu, Shi-dai & Zeng, Yue-e & Wu, Bo-wei, 2016. "Exploring the relationship between urbanization, energy consumption, and CO2 emissions in different provinces of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1563-1579.
    5. Rui Huang & Shaohui Zhang & Changxin Liu, 2018. "Comparing Urban and Rural Household CO 2 Emissions—Case from China’s Four Megacities: Beijing, Tianjin, Shanghai, and Chongqing," Energies, MDPI, vol. 11(5), pages 1-17, May.
    6. Li, Jun & Zhang, Dayong & Su, Bin, 2019. "The Impact of Social Awareness and Lifestyles on Household Carbon Emissions in China," Ecological Economics, Elsevier, vol. 160(C), pages 145-155.
    7. Hongwu Zhang & Lequan Zhang & Keying Wang & Xunpeng Shi, 2019. "Unveiling Key Drivers of Indirect Carbon Emissions of Chinese Older Households," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
    8. Xinkuo Xu & Liyan Han, 2017. "Diverse Effects of Consumer Credit on Household Carbon Emissions at Quantiles: Evidence from Urban China," Sustainability, MDPI, vol. 9(9), pages 1-25, September.
    9. Yueyue Rong & Junsong Jia & Min Ju & Chundi Chen & Yangming Zhou & Yexi Zhong, 2021. "Multi-Perspective Analysis of Household Carbon Dioxide Emissions from Direct Energy Consumption by the Methods of Logarithmic Mean Divisia Index and σ Convergence in Central China," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    10. Xin Li & Xiaoqiong He & Xiyu Luo & Xiandan Cui & Minxi Wang, 2020. "Exploring the characteristics and drivers of indirect energy consumption of urban and rural households from a sectoral perspective," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 907-924, October.
    11. Yuan, Baolong & Ren, Shenggang & Chen, Xiaohong, 2015. "The effects of urbanization, consumption ratio and consumption structure on residential indirect CO2 emissions in China: A regional comparative analysis," Applied Energy, Elsevier, vol. 140(C), pages 94-106.
    12. Vélez-Henao, Johan-Andrés & Font Vivanco, David & Hernández-Riveros, Jesús-Antonio, 2019. "Technological change and the rebound effect in the STIRPAT model: A critical view," Energy Policy, Elsevier, vol. 129(C), pages 1372-1381.
    13. Zhang, Yimeng & Wang, Feng & Zhang, Bing, 2023. "The impacts of household structure transitions on household carbon emissions in China," Ecological Economics, Elsevier, vol. 206(C).
    14. Xiaoyu Liu & Xian’en Wang & Junnian Song & Haiyan Duan & Shuo Wang, 2019. "Why Are the Carbon Footprints of China’s Urban Households Rising? An Input–Output Analysis and Structural Decomposition Analysis," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    15. Zhang, Chuanguo & Tan, Zheng, 2016. "The relationships between population factors and China's carbon emissions: Does population aging matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1018-1025.
    16. Jingjing Chen & Yangyang Lin & Xiaojun Wang & Bingjing Mao & Lihong Peng, 2022. "Direct and Indirect Carbon Emission from Household Consumption Based on LMDI and SDA Model: A Decomposition and Comparison Analysis," Energies, MDPI, vol. 15(14), pages 1-22, July.
    17. Tao Lin & Yunjun Yu & Xuemei Bai & Ling Feng & Jin Wang, 2013. "Greenhouse Gas Emissions Accounting of Urban Residential Consumption: A Household Survey Based Approach," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-12, February.
    18. Ryu Koide & Michael Lettenmeier & Satoshi Kojima & Viivi Toivio & Aryanie Amellina & Lewis Akenji, 2019. "Carbon Footprints and Consumer Lifestyles: An Analysis of Lifestyle Factors and Gap Analysis by Consumer Segment in Japan," Sustainability, MDPI, vol. 11(21), pages 1-25, October.
    19. Xie, Rui & Fang, Jiayu & Liu, Cenjie, 2017. "The effects of transportation infrastructure on urban carbon emissions," Applied Energy, Elsevier, vol. 196(C), pages 199-207.
    20. Fan, Jing-Li & Zhang, Yue-Jun & Wang, Bing, 2017. "The impact of urbanization on residential energy consumption in China: An aggregated and disaggregated analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 220-233.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:23:p:6563-:d:289149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.