IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i9p3347-d170750.html
   My bibliography  Save this article

Multi-Criteria Measurement of Sustainable Innovativeness in Farming Organisations: Evidence from Lithuania

Author

Listed:
  • Rolandas Drejeris

    (Business and Rural Development Management Institute, Aleksandras Stulginskis University, 53361 Kauno distr., Lithuania)

  • Astrida Miceikienė

    (Institute of Economics, Accounting and Finance, Aleksandras Stulginskis University, 53361 Kauno distr., Lithuania)

Abstract

Measuring sustainable innovativeness of farms is a major challenge for both practitioners and academics. This article looks into the need for sustainable innovativeness assessment in agricultural business. To the best of our knowledge, farm sustainable innovativeness measurement has not been investigated in detail and no objective methodology for innovativeness assessment has yet been proposed. The objective of this article is to look into the possibility of using some methodology for measuring farm sustainable innovativeness and thus ranking farms based on this criterion. The article demonstrates the need for a multi-criteria method of innovativeness measurement and substantiates the complex proportional assessment method (COPRAS) as the most appropriate choice for addressing this challenge. The article presents the model of use of the proposed method and describes its practical application. The final result refutes the opinion that farm innovation depends only on possibilities of investing in a certain area. Indeed, staff creativity and the position of the management regarding certain areas of business make an essential contribution to the sustainable innovativeness level in the agricultural organisations.

Suggested Citation

  • Rolandas Drejeris & Astrida Miceikienė, 2018. "Multi-Criteria Measurement of Sustainable Innovativeness in Farming Organisations: Evidence from Lithuania," Sustainability, MDPI, vol. 10(9), pages 1-14, September.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:9:p:3347-:d:170750
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/9/3347/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/9/3347/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maredia, Mywish K. & Shankar, Bhavani & Kelley, Timothy G. & Stevenson, James R., 2014. "Impact assessment of agricultural research, institutional innovation, and technology adoption: Introduction to the special section," Food Policy, Elsevier, vol. 44(C), pages 214-217.
    2. Paul J. A. Withers & Colin Neal & Helen P. Jarvie & Donnacha G. Doody, 2014. "Agriculture and Eutrophication: Where Do We Go from Here?," Sustainability, MDPI, vol. 6(9), pages 1-23, September.
    3. Eleonora Bottani & Maria Carmen Gentilotti & Marta Rinaldi, 2017. "A Fuzzy Logic-Based Tool for the Assessment of Corporate Sustainability: A Case Study in the Food Machinery Industry," Sustainability, MDPI, vol. 9(4), pages 1-29, April.
    4. Harrison, Rupert & Jaumandreu, Jordi & Mairesse, Jacques & Peters, Bettina, 2014. "Does innovation stimulate employment? A firm-level analysis using comparable micro-data from four European countries," International Journal of Industrial Organization, Elsevier, vol. 35(C), pages 29-43.
    5. Guanche, R. & de Andrés, A.D. & Simal, P.D. & Vidal, C. & Losada, I.J., 2014. "Uncertainty analysis of wave energy farms financial indicators," Renewable Energy, Elsevier, vol. 68(C), pages 570-580.
    6. Victor M. Bennett & Daniel A. Levinthal, 2017. "Firm Lifecycles: Linking Employee Incentives and Firm Growth Dynamics," Strategic Management Journal, Wiley Blackwell, vol. 38(10), pages 2005-2018, October.
    7. Astariz, S. & Iglesias, G., 2015. "The economics of wave energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 397-408.
    8. Latruffe, Laure & Diazabakana, Ambre & Bockstaller, Christian & Desjeux, Yann & Finn, John & Kelly, Edel & Ryan, Mary & Uthes, Sandra, 2016. "Measurement of sustainability in agriculture: a review of indicators," Studies in Agricultural Economics, Research Institute for Agricultural Economics, vol. 118(3), pages 1-8, December.
    9. Christian Linder & Sven Seidenstricker, 2017. "Does The Supplier Affects Consumers’ Product Performance Expectations? An Analysis About The Innovativeness Perception," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 21(01), pages 1-27, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. García-Granero, Eva M. & Piedra-Muñoz, Laura & Galdeano-Gómez, Emilio, 2020. "Measuring eco-innovation dimensions: The role of environmental corporate culture and commercial orientation," Research Policy, Elsevier, vol. 49(8).
    2. Eva M. García-Granero & Laura Piedra-Muñoz & Emilio Galdeano-Gómez, 2020. "Multidimensional Assessment of Eco-Innovation Implementation: Evidence from Spanish Agri-Food Sector," IJERPH, MDPI, vol. 17(4), pages 1-22, February.
    3. Rolandas Drejeris & Danguolė Oželienė, 2019. "Modeling Environmental Actions of Corporate Sustainable Activity: Evidence from Lithuania," Central European Business Review, Prague University of Economics and Business, vol. 2019(5), pages 69-93.
    4. García-Granero, Eva M. & Piedra-Muñoz, Laura & Galdeano-Gómez, Emilio, 2020. "Measuring eco-innovation dimensions: The role of environmental corporate culture and commercial orientation," MPRA Paper 119909, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chenglong Guo & Wanan Sheng & Dakshina G. De Silva & George Aggidis, 2023. "A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model," Energies, MDPI, vol. 16(5), pages 1-30, February.
    2. López-Ruiz, Alejandro & Bergillos, Rafael J. & Lira-Loarca, Andrea & Ortega-Sánchez, Miguel, 2018. "A methodology for the long-term simulation and uncertainty analysis of the operational lifetime performance of wave energy converter arrays," Energy, Elsevier, vol. 153(C), pages 126-135.
    3. López-Ruiz, Alejandro & Bergillos, Rafael J. & Ortega-Sánchez, Miguel, 2016. "The importance of wave climate forecasting on the decision-making process for nearshore wave energy exploitation," Applied Energy, Elsevier, vol. 182(C), pages 191-203.
    4. Pasquale Contestabile & Enrico Di Lauro & Mariano Buccino & Diego Vicinanza, 2016. "Economic Assessment of Overtopping BReakwater for Energy Conversion (OBREC): A Case Study in Western Australia," Sustainability, MDPI, vol. 9(1), pages 1-28, December.
    5. Choupin, Ophelie & Henriksen, Michael & Tomlinson, Rodger, 2022. "Interrelationship between variables for wave direction-dependent WEC/site-configuration pairs using the CapEx method," Energy, Elsevier, vol. 248(C).
    6. Ophelie Choupin & Michael Henriksen & Amir Etemad-Shahidi & Rodger Tomlinson, 2021. "Breaking-Down and Parameterising Wave Energy Converter Costs Using the CapEx and Similitude Methods," Energies, MDPI, vol. 14(4), pages 1-27, February.
    7. Omar Farrok & Koushik Ahmed & Abdirazak Dahir Tahlil & Mohamud Mohamed Farah & Mahbubur Rahman Kiran & Md. Rabiul Islam, 2020. "Electrical Power Generation from the Oceanic Wave for Sustainable Advancement in Renewable Energy Technologies," Sustainability, MDPI, vol. 12(6), pages 1-23, March.
    8. López-Ruiz, Alejandro & Bergillos, Rafael J. & Raffo-Caballero, Juan M. & Ortega-Sánchez, Miguel, 2018. "Towards an optimum design of wave energy converter arrays through an integrated approach of life cycle performance and operational capacity," Applied Energy, Elsevier, vol. 209(C), pages 20-32.
    9. Hans Vrolijk & Krijn Poppe, 2021. "Cost of Extending the Farm Accountancy Data Network to the Farm Sustainability Data Network: Empirical Evidence," Sustainability, MDPI, vol. 13(15), pages 1-13, July.
    10. Alhassan Abdul-Wakeel Karakara & Evans Osabuohien, 2020. "ICT adoption, competition and innovation of informal firms in West Africa: a comparative study of Ghana and Nigeria," Journal of Enterprising Communities: People and Places in the Global Economy, Emerald Group Publishing Limited, vol. 14(3), pages 397-414, June.
    11. Ayhan, Fatih & Elal, Onuray, 2023. "The IMPACTS of technological change on employment: Evidence from OECD countries with panel data analysis," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    12. Luigi Aldieri & Concetto Paolo Vinci, 2019. "Firm Size and Sustainable Innovation: A Theoretical and Empirical Analysis," Sustainability, MDPI, vol. 11(10), pages 1-9, May.
    13. Tunde Aderinto & Hua Li, 2020. "Effect of Spatial and Temporal Resolution Data on Design and Power Capture of a Heaving Point Absorber," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    14. Adrian De Andres & Jéromine Maillet & Jørgen Hals Todalshaug & Patrik Möller & David Bould & Henry Jeffrey, 2016. "Techno-Economic Related Metrics for a Wave Energy Converters Feasibility Assessment," Sustainability, MDPI, vol. 8(11), pages 1-19, October.
    15. Morim, Joao & Cartwright, Nick & Hemer, Mark & Etemad-Shahidi, Amir & Strauss, Darrell, 2019. "Inter- and intra-annual variability of potential power production from wave energy converters," Energy, Elsevier, vol. 169(C), pages 1224-1241.
    16. Tianna Bloise Thomaz & David Crooks & Encarni Medina-Lopez & Leonore van Velzen & Henry Jeffrey & Joseba Lopez Mendia & Raul Rodriguez Arias & Pablo Ruiz Minguela, 2019. "O&M Models for Ocean Energy Converters: Calibrating through Real Sea Data," Energies, MDPI, vol. 12(13), pages 1-20, June.
    17. Horst Feldmann, 2013. "Technological unemployment in industrial countries," Journal of Evolutionary Economics, Springer, vol. 23(5), pages 1099-1126, November.
    18. Agnieszka Wojewódzka-Wiewiórska & Anna Kłoczko-Gajewska & Piotr Sulewski, 2019. "Between the Social and Economic Dimensions of Sustainability in Rural Areas—In Search of Farmers’ Quality of Life," Sustainability, MDPI, vol. 12(1), pages 1-26, December.
    19. Fabio Montobbio & Jacopo Staccioli & Maria Enrica Virgillito & Marco Vivarelli, 2022. "The empirics of technology, employment and occupations: lessons learned and challenges ahead," DISCE - Quaderni del Dipartimento di Politica Economica dipe0028, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
    20. Bianchini, Stefano & Pellegrino, Gabriele, 2019. "Innovation persistence and employment dynamics," Research Policy, Elsevier, vol. 48(5), pages 1171-1186.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:9:p:3347-:d:170750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.