IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v396y2025ics0306261925009365.html

Wave energy in season: a comparative approach to feasibility of seasonal deployments for remote coastal communities

Author

Listed:
  • Trueworthy, Ali
  • Gaebele, Daniel
  • Jones, Kristin
  • Hermanson, Ian
  • Grear, Molly

Abstract

Remote coastal communities, which could be early adopters of wave energy projects, have concerns over costs, conflicts, and potential risks of development. Designers and developers are challenged to address these community concerns as they continue to develop wave energy technologies. One potential means of reducing costs, conflicts, and risks, especially for demonstration and pilot-scale projects, could be planning a deployment that operates for only a portion of the year—a seasonal deployment. In this paper we examine the impacts of a seasonal deployment in terms of cost, electricity production, operations and maintenance, environmental impacts, and community benefits. We take a holistic, comparative approach to feasibility that can be replicated for other comparative studies. We estimate electricity production using a point absorber WEC modeled near Sitka, AK, USA and optimized for the given sea conditions. We determine that, for remote community sized projects, seasonal deployments could result in small cost savings (less than 10 %), but larger decreases in annual energy production (around 30 % for our case study area). Seasonal deployments could be preferable in places with seasonal energy needs, if failures and device access become a major hindrance to wave energy technology development, or as a cautionary approach to introducing new technology to the oceans. We also determine that a highly seasonal wave resource is not necessarily a requirement for seasonal deployments to be considered. Seasonal deployments are an alternative to year-round deployments that can be considered in places where marine spatial conflict is a seasonal concern.

Suggested Citation

  • Trueworthy, Ali & Gaebele, Daniel & Jones, Kristin & Hermanson, Ian & Grear, Molly, 2025. "Wave energy in season: a comparative approach to feasibility of seasonal deployments for remote coastal communities," Applied Energy, Elsevier, vol. 396(C).
  • Handle: RePEc:eee:appene:v:396:y:2025:i:c:s0306261925009365
    DOI: 10.1016/j.apenergy.2025.126206
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925009365
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126206?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Bouke Wiersma & Patrick Devine‐Wright, 2014. "Public engagement with offshore renewable energy: a critical review," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 5(4), pages 493-507, July.
    2. Enrico Giglio & Ermando Petracca & Bruno Paduano & Claudio Moscoloni & Giuseppe Giorgi & Sergej Antonello Sirigu, 2023. "Estimating the Cost of Wave Energy Converters at an Early Design Stage: A Bottom-Up Approach," Sustainability, MDPI, vol. 15(8), pages 1-39, April.
    3. Astariz, S. & Iglesias, G., 2015. "The economics of wave energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 397-408.
    4. Alexander, Karen A. & Meyjes, Sophie A. & Heymans, Johanna J., 2016. "Spatial ecosystem modelling of marine renewable energy installations: Gauging the utility of Ecospace," Ecological Modelling, Elsevier, vol. 331(C), pages 115-128.
    5. López, Iraide & Andreu, Jon & Ceballos, Salvador & Martínez de Alegría, Iñigo & Kortabarria, Iñigo, 2013. "Review of wave energy technologies and the necessary power-equipment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 413-434.
    6. Fadaeenejad, M. & Shamsipour, R. & Rokni, S.D. & Gomes, C., 2014. "New approaches in harnessing wave energy: With special attention to small islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 345-354.
    7. Choong-Ki Kim & Jodie E Toft & Michael Papenfus & Gregory Verutes & Anne D Guerry & Marry H Ruckelshaus & Katie K Arkema & Gregory Guannel & Spencer A Wood & Joanna R Bernhardt & Heather Tallis & Mark, 2012. "Catching the Right Wave: Evaluating Wave Energy Resources and Potential Compatibility with Existing Marine and Coastal Uses," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-14, November.
    8. García-Medina, Gabriel & Yang, Zhaoqing & Wu, Wei-Cheng & Wang, Taiping, 2021. "Wave resource characterization at regional and nearshore scales for the U.S. Alaska coast based on a 32-year high-resolution hindcast," Renewable Energy, Elsevier, vol. 170(C), pages 595-612.
    9. Tiron, Roxana & Mallon, Fionn & Dias, Frédéric & Reynaud, Emmanuel G., 2015. "The challenging life of wave energy devices at sea: A few points to consider," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1263-1272.
    10. O'Connor, M. & Lewis, T. & Dalton, G., 2013. "Techno-economic performance of the Pelamis P1 and Wavestar at different ratings and various locations in Europe," Renewable Energy, Elsevier, vol. 50(C), pages 889-900.
    11. Ciappi, Lorenzo & Simonetti, Irene & Bianchini, Alessandro & Cappietti, Lorenzo & Manfrida, Giampaolo, 2022. "Application of integrated wave-to-wire modelling for the preliminary design of oscillating water column systems for installations in moderate wave climates," Renewable Energy, Elsevier, vol. 194(C), pages 232-248.
    12. Lion Hirth, 2013. "The Market Value of Variable Renewables. The Effect of Solar and Wind Power Variability on their Relative Price," RSCAS Working Papers 2013/36, European University Institute.
    13. Dalton, G.J. & Alcorn, R. & Lewis, T., 2010. "Case study feasibility analysis of the Pelamis wave energy convertor in Ireland, Portugal and North America," Renewable Energy, Elsevier, vol. 35(2), pages 443-455.
    14. O'Connor, M. & Lewis, T. & Dalton, G., 2013. "Weather window analysis of Irish west coast wave data with relevance to operations & maintenance of marine renewables," Renewable Energy, Elsevier, vol. 52(C), pages 57-66.
    15. Amélie Têtu & Francesco Ferri & Morten Bech Kramer & Jørgen Hals Todalshaug, 2018. "Physical and Mathematical Modeling of a Wave Energy Converter Equipped with a Negative Spring Mechanism for Phase Control," Energies, MDPI, vol. 11(9), pages 1-23, September.
    16. Fairley, Iain & Lewis, Matthew & Robertson, Bryson & Hemer, Mark & Masters, Ian & Horrillo-Caraballo, Jose & Karunarathna, Harshinie & Reeve, Dominic E., 2020. "A classification system for global wave energy resources based on multivariate clustering," Applied Energy, Elsevier, vol. 262(C).
    17. Draycott, S. & Sellar, B. & Davey, T. & Noble, D.R. & Venugopal, V. & Ingram, D.M., 2019. "Capture and simulation of the ocean environment for offshore renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 15-29.
    18. Caballero, Mariah D. & Gunda, Thushara & McDonald, Yolanda J., 2023. "Energy justice & coastal communities: The case for Meaningful Marine Renewable Energy Development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    19. Babarit, Aurélien & Bull, Diana & Dykes, Katherine & Malins, Robert & Nielsen, Kim & Costello, Ronan & Roberts, Jesse & Bittencourt Ferreira, Claudio & Kennedy, Ben & Weber, Jochem, 2017. "Stakeholder requirements for commercially successful wave energy converter farms," Renewable Energy, Elsevier, vol. 113(C), pages 742-755.
    20. A. P. Ravikumar & E. Baker & A. Bates & D. Nock & D. Venkataraman & T. Johnson & M. Ash & S. Z. Attari & K. Bowie & S. Carley & S. Castellanos & M. Cha & D. L. Clark & D. Deane-Ryan & D. Djokic & J. C, 2023. "Enabling an equitable energy transition through inclusive research," Nature Energy, Nature, vol. 8(1), pages 1-4, January.
    21. Guanche, R. & de Andrés, A.D. & Simal, P.D. & Vidal, C. & Losada, I.J., 2014. "Uncertainty analysis of wave energy farms financial indicators," Renewable Energy, Elsevier, vol. 68(C), pages 570-580.
    22. Coe, Ryan G. & Ahn, Seongho & Neary, Vincent S. & Kobos, Peter H. & Bacelli, Giorgio, 2021. "Maybe less is more: Considering capacity factor, saturation, variability, and filtering effects of wave energy devices," Applied Energy, Elsevier, vol. 291(C).
    23. Robertson, Bryson & Bekker, Jessica & Buckham, Bradley, 2020. "Renewable integration for remote communities: Comparative allowable cost analyses for hydro, solar and wave energy," Applied Energy, Elsevier, vol. 264(C).
    24. O'Connor, M. & Lewis, T. & Dalton, G., 2013. "Operational expenditure costs for wave energy projects and impacts on financial returns," Renewable Energy, Elsevier, vol. 50(C), pages 1119-1131.
    25. Beatty, Scott J. & Wild, Peter & Buckham, Bradley J., 2010. "Integration of a wave energy converter into the electricity supply of a remote Alaskan island," Renewable Energy, Elsevier, vol. 35(6), pages 1203-1213.
    26. Richardson, Riley Lindsay & Buckham, Bradley & McWhinnie, Lauren Helen, 2022. "Mapping a blue energy future for British Columbia: Creating a holistic framework for tidal stream energy development in remote coastal communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    27. Kilcher, Levi & García Medina, Gabriel & Yang, Zhaoqing, 2023. "A scalable wave resource assessment methodology: Application to U.S. waters," Renewable Energy, Elsevier, vol. 217(C).
    28. Teillant, Boris & Costello, Ronan & Weber, Jochem & Ringwood, John, 2012. "Productivity and economic assessment of wave energy projects through operational simulations," Renewable Energy, Elsevier, vol. 48(C), pages 220-230.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ophelie Choupin & Michael Henriksen & Amir Etemad-Shahidi & Rodger Tomlinson, 2021. "Breaking-Down and Parameterising Wave Energy Converter Costs Using the CapEx and Similitude Methods," Energies, MDPI, vol. 14(4), pages 1-27, February.
    2. Choupin, O. & Pinheiro Andutta, F. & Etemad-Shahidi, A. & Tomlinson, R., 2021. "A decision-making process for wave energy converter and location pairing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    3. Coe, Ryan G. & Ahn, Seongho & Neary, Vincent S. & Kobos, Peter H. & Bacelli, Giorgio, 2021. "Maybe less is more: Considering capacity factor, saturation, variability, and filtering effects of wave energy devices," Applied Energy, Elsevier, vol. 291(C).
    4. Choupin, Ophelie & Henriksen, Michael & Tomlinson, Rodger, 2022. "Interrelationship between variables for wave direction-dependent WEC/site-configuration pairs using the CapEx method," Energy, Elsevier, vol. 248(C).
    5. Farrell, Niall & Donoghue, Cathal O’ & Morrissey, Karyn, 2015. "Quantifying the uncertainty of wave energy conversion device cost for policy appraisal: An Irish case study," Energy Policy, Elsevier, vol. 78(C), pages 62-77.
    6. Giorcelli, Filippo & Giglio, Enrico & Sirigu, Sergej Antonello & Mattiazzo, Giuliana, 2025. "Power grid informed techno-economic analysis of the optimal PeWEC design," Energy, Elsevier, vol. 334(C).
    7. Li, Hai & Shi, Xiaodan & Kong, Weihua & Kong, Lingji & Hu, Yongli & Wu, Xiaoping & Pan, Hongye & Zhang, Zutao & Pan, Yajia & Yan, Jinyue, 2025. "Advanced wave energy conversion technologies for sustainable and smart sea: A comprehensive review," Renewable Energy, Elsevier, vol. 238(C).
    8. Tunde Aderinto & Hua Li, 2018. "Ocean Wave Energy Converters: Status and Challenges," Energies, MDPI, vol. 11(5), pages 1-26, May.
    9. Xu, Xinxin & Robertson, Bryson & Buckham, Bradley, 2020. "A techno-economic approach to wave energy resource assessment and development site identification," Applied Energy, Elsevier, vol. 260(C).
    10. López-Ruiz, Alejandro & Bergillos, Rafael J. & Ortega-Sánchez, Miguel, 2016. "The importance of wave climate forecasting on the decision-making process for nearshore wave energy exploitation," Applied Energy, Elsevier, vol. 182(C), pages 191-203.
    11. Cuadra, L. & Salcedo-Sanz, S. & Nieto-Borge, J.C. & Alexandre, E. & Rodríguez, G., 2016. "Computational intelligence in wave energy: Comprehensive review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1223-1246.
    12. Uihlein, Andreas & Magagna, Davide, 2016. "Wave and tidal current energy – A review of the current state of research beyond technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1070-1081.
    13. de Oliveira, Lucas & Santos, Ivan Felipe Silva dos & Schmidt, Nágila Lucietti & Tiago Filho, Geraldo Lúcio & Camacho, Ramiro Gustavo Ramirez & Barros, Regina Mambeli, 2021. "Economic feasibility study of ocean wave electricity generation in Brazil," Renewable Energy, Elsevier, vol. 178(C), pages 1279-1290.
    14. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
    15. Chenglong Guo & Wanan Sheng & Dakshina G. De Silva & George Aggidis, 2023. "A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model," Energies, MDPI, vol. 16(5), pages 1-30, February.
    16. Delpey, Matthias & Lastiri, Ximun & Abadie, Stéphane & Roeber, Volker & Maron, Philippe & Liria, Pedro & Mader, Julien, 2021. "Characterization of the wave resource variability in the French Basque coastal area based on a high-resolution hindcast," Renewable Energy, Elsevier, vol. 178(C), pages 79-95.
    17. Astariz, S. & Iglesias, G., 2015. "The economics of wave energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 397-408.
    18. Dalton, Gordon & Allan, Grant & Beaumont, Nicola & Georgakaki, Aliki & Hacking, Nick & Hooper, Tara & Kerr, Sandy & O’Hagan, Anne Marie & Reilly, Kieran & Ricci, Pierpaolo & Sheng, Wanan & Stallard, T, 2015. "Economic and socio-economic assessment methods for ocean renewable energy: Public and private perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 850-878.
    19. Lavidas, George, 2020. "Selection index for Wave Energy Deployments (SIWED): A near-deterministic index for wave energy converters," Energy, Elsevier, vol. 196(C).
    20. Pasquale Contestabile & Enrico Di Lauro & Mariano Buccino & Diego Vicinanza, 2016. "Economic Assessment of Overtopping BReakwater for Energy Conversion (OBREC): A Case Study in Western Australia," Sustainability, MDPI, vol. 9(1), pages 1-28, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:396:y:2025:i:c:s0306261925009365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.