IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v11y2022i6p56-d832298.html
   My bibliography  Save this article

Biotic Part of the Product Material Footprint: Comparison of Indicators Regarding Their Interpretation and Applicability

Author

Listed:
  • Clemens Mostert

    (Center for Environmental Systems Research (CESR), Kassel Institute for Sustainability, University of Kassel, 34109 Kassel, Germany)

  • Stefan Bringezu

    (Center for Environmental Systems Research (CESR), Kassel Institute for Sustainability, University of Kassel, 34109 Kassel, Germany)

Abstract

The product material footprint (PMF) represents a central instrument to assess the potential environmental impacts of products and services based on their life-cycle-wide material use. Within the life cycle impact assessment framework, the indicators raw material input (RMI) and total material requirement (TMR) have been used for its calculation, but so far, only abiotic materials have been considered. This research analyses the requirements and indicators for the assessment of the biotic part of the PMF. The central question is whether the indicators RMI biotic and TMR biotic are suitable for this purpose or if they need to be adapted. For comparison, the indicator cumulative raw material demand (CRD) is applied. The indicator concepts of RMI, TMR, and CRD are compared by defining the system boundaries for determining the biotic parts of the footprint. To test the applicability, the production of wheat bread is assessed as a case study. The characterization factors of wheat grains are determined and each of the three indicators is implemented in the software openLCA for use with the ecoinvent database. The results show that RMI biotic and TMR biotic are suitable indicators for the quantification and assessment of the biotic part of the PMF. While CRD abiotic provides the same information as RMI abiotic , both indicators differ regarding the biotic part. The CRD per definition does not consider biotic inputs from agriculture and forestry and thus conveys insufficient information on the used and unused biomass extraction for the product LCA. The ratio of RMI biotic to the net annual increment and TMR biotic to the net primary production could be used for absolute sustainability assessment.

Suggested Citation

  • Clemens Mostert & Stefan Bringezu, 2022. "Biotic Part of the Product Material Footprint: Comparison of Indicators Regarding Their Interpretation and Applicability," Resources, MDPI, vol. 11(6), pages 1-16, June.
  • Handle: RePEc:gam:jresou:v:11:y:2022:i:6:p:56-:d:832298
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/11/6/56/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/11/6/56/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael Chappell & Liliana LaValle, 2011. "Food security and biodiversity: can we have both? An agroecological analysis," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 28(1), pages 3-26, February.
    2. Manfred Lenzen & Arne Geschke & James West & Jacob Fry & Arunima Malik & Stefan Giljum & Llorenç Milà i Canals & Pablo Piñero & Stephan Lutter & Thomas Wiedmann & Mengyu Li & Maartje Sevenster & Janez, 2022. "Implementing the material footprint to measure progress towards Sustainable Development Goals 8 and 12," Nature Sustainability, Nature, vol. 5(2), pages 157-166, February.
    3. Blanco, Carlos Felipe & Marques, Alexandra & van Bodegom, Peter M., 2018. "An integrated framework to assess impacts on ecosystem services in LCA demonstrated by a case study of mining in Chile," Ecosystem Services, Elsevier, vol. 30(PB), pages 211-219.
    4. Marius Dan Gavriletea, 2017. "Environmental Impacts of Sand Exploitation. Analysis of Sand Market," Sustainability, MDPI, vol. 9(7), pages 1-26, June.
    5. Seufert, Verena & Ramankutty, Navin & Mayerhofer, Tabea, 2017. "What is this thing called organic? – How organic farming is codified in regulations," Food Policy, Elsevier, vol. 68(C), pages 10-20.
    6. Lauran Van Oers & Jeroen Guinée, 2016. "The Abiotic Depletion Potential: Background, Updates, and Future," Resources, MDPI, vol. 5(1), pages 1-12, March.
    7. Nadine Rötzer & Mario Schmidt, 2018. "Decreasing Metal Ore Grades—Is the Fear of Resource Depletion Justified?," Resources, MDPI, vol. 7(4), pages 1-14, December.
    8. Clemens Mostert & Stefan Bringezu, 2019. "Measuring Product Material Footprint as New Life Cycle Impact Assessment Method: Indicators and Abiotic Characterization Factors," Resources, MDPI, vol. 8(2), pages 1-19, April.
    9. Mutoko, Morgan C. & Hein, Lars & Shisanya, Chris A., 2015. "Tropical forest conservation versus conversion trade-offs: Insights from analysis of ecosystem services provided by Kakamega rainforest in Kenya," Ecosystem Services, Elsevier, vol. 14(C), pages 1-11.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fábio T. F. Silva & Alexandre Szklo & Amanda Vinhoza & Ana Célia Nogueira & André F. P. Lucena & Antônio Marcos Mendonça & Camilla Marcolino & Felipe Nunes & Francielle M. Carvalho & Isabela Tagomori , 2022. "Inter-sectoral prioritization of climate technologies: insights from a Technology Needs Assessment for mitigation in Brazil," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(7), pages 1-39, October.
    2. Hannah Romanowski & Lauren Blake, 2023. "Neonicotinoid seed treatment on sugar beet in England: a qualitative analysis of the controversy, existing policy and viability of alternatives," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 13(3), pages 453-472, September.
    3. Imen Turki Abdelhedi & Sonia Zouari Zouari, 2020. "Agriculture and Food Security in North Africa: a Theoretical and Empirical Approach," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 11(1), pages 193-210, March.
    4. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    5. Jiamin Liu & Xiaoyu Ma & Bin Zhao & Qi Cui & Sisi Zhang & Jiaoning Zhang, 2023. "Mandatory Environmental Regulation, Enterprise Labor Demand and Green Innovation Transformation: A Quasi-Experiment from China’s New Environmental Protection Law," Sustainability, MDPI, vol. 15(14), pages 1-31, July.
    6. Théodore Nikiema & Eugène C. Ezin & Sylvain Kpenavoun Chogou, 2023. "Bibliometric Analysis of the State of Research on Agroecology Adoption and Methods Used for Its Assessment," Sustainability, MDPI, vol. 15(21), pages 1-18, November.
    7. Johannes Kotschi & Bernd Horneburg, 2018. "The Open Source Seed Licence: A novel approach to safeguarding access to plant germplasm," PLOS Biology, Public Library of Science, vol. 16(10), pages 1-7, October.
    8. Yufeng Luo & Haolong Fu & Seydou Traore, 2014. "Biodiversity Conservation in Rice Paddies in China: Toward Ecological Sustainability," Sustainability, MDPI, vol. 6(9), pages 1-18, September.
    9. Nesar Ahmed & Shirley Thompson & Giovanni M. Turchini, 2020. "Organic aquaculture productivity, environmental sustainability, and food security: insights from organic agriculture," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1253-1267, December.
    10. Umar Nawaz Kayani & Anamul Haque & Umme Kulsum & Nishat Taslin Mohona & Fakhrul Hasan, 2023. "Modeling the Antecedents of Green Consumption Values to Promote the Green Attitude," Sustainability, MDPI, vol. 15(17), pages 1-15, August.
    11. Larisa BUGAIAN & Cristina DIACONU, 2022. "Quantifying The Sustainability Of The Wine Sector Through Life Cycle Assessment (Lca)," Contemporary Economy Journal, Constantin Brancoveanu University, vol. 7(4), pages 63-69.
    12. Julie Sardos & Sara Muller & Marie-France Duval & Jean-Louis Noyer & Vincent Lebot, 2016. "Root crops diversity and agricultural resilience: a case study of traditional agrosystems in Vanuatu (Oceania)," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 33(3), pages 721-736, September.
    13. Iliriana Miftari & Rainer Haas & Oliver Meixner & Drini Imami & Ekrem Gjokaj, 2022. "Factors Influencing Consumer Attitudes towards Organic Food Products in a Transition Economy—Insights from Kosovo," Sustainability, MDPI, vol. 14(10), pages 1-14, May.
    14. Dimitrios Vlachopoulos & Rannveig Björk Thorkelsdóttir & Despoina Schina & Jóna Guðrún Jónsdóttir, 2023. "Teachers’ Experience and Perceptions of Sustainable Digitalization in School Education: An Existential Phenomenological Study of Teachers in Romania, Greece, Cyprus, Iceland, and The Netherlands," Sustainability, MDPI, vol. 15(18), pages 1-17, September.
    15. Weerahewa, Jeevika & Dayananda, Dasuni, 2023. "Land use changes and economic effects of alternative fertilizer policies: A simulation analysis with a bio-economic model for a Tank Village of Sri Lanka," Agricultural Systems, Elsevier, vol. 205(C).
    16. Stefan Bringezu, 2019. "Toward Science-Based and Knowledge-Based Targets for Global Sustainable Resource Use," Resources, MDPI, vol. 8(3), pages 1-21, August.
    17. Zegar, Józef S., 2012. "Gospodarstwa Rodzinne Wobec Wyzwań Wyżywienia I Ochrony Środowiska – Ujęcie Globalne," Village and Agriculture (Wieś i Rolnictwo), Polish Academy of Sciences (IRWiR PAN), Institute of Rural and Agricultural Development, vol. 4(157).
    18. Gümüşsoy, Aleyna & Başyi̇ği̇t, Mikail & Uzun Kart, Elif, 2023. "Economic potential and environmental impact of metal recovery from copper slag flotation tailings," Resources Policy, Elsevier, vol. 80(C).
    19. Zhu, Zhanguo & Zhang, Tong & Hu, Wuyang, 2023. "The accumulation and substitution effects of multi-nation certified organic and protected eco-origin food labels in China," Ecological Economics, Elsevier, vol. 203(C).
    20. Rau, Anna-Lena & von Wehrden, Henrik & Abson, David J., 2018. "Temporal Dynamics of Ecosystem Services," Ecological Economics, Elsevier, vol. 151(C), pages 122-130.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:11:y:2022:i:6:p:56-:d:832298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.