IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i9p1570-d412418.html
   My bibliography  Save this article

The Collective Influence of Component Commonality, Adjustable-Rate, Postponement, and Rework on Multi-Item Manufacturing Decision

Author

Listed:
  • Singa Wang Chiu

    (Department of Business Administration, Chaoyang University of Technology, Taichung 413, Taiwan)

  • Liang-Wei You

    (Department of Industrial Engineering and Management, Chaoyang University of Technology, Taichung 413, Taiwan)

  • Tsu-Ming Yeh

    (Department of Industrial Engineering and Management, National Quemoy University, Kinmen 892, Taiwan)

  • Tiffany Chiu

    (Anisfield School of Business, Ramapo College of New Jersey, Mahwah, NJ 07430, USA)

Abstract

The present study explores the collective influence of component commonality, adjustable-rate, postponement, and rework on the multi-item manufacturing decision. In contemporary markets, customer demand trends point to fast-response, high-quality, and diversified merchandise. Hence, to meet customer expectations, modern manufacturers must plan their multiproduct fabrication schedule in the most efficient and cost-saving way, especially when product commonality exists in a series of end products. To respond to the above viewpoints, we propose a two-stage multiproduct manufacturing scheme, featuring an adjustable fabrication rate in stage one for all needed common parts, and manufacturing diversified finished goods in stage two. The rework processes are used in both stages to repair the inevitable, nonconforming items and ensure the desired product quality. We derive the cost-minimized rotation cycle decision through modeling, formulation, cost analysis, and differential calculus. Using a numerical illustration, we reveal the collective and individual influence of adjustable-rate, rework, and postponement strategies on diverse critical system performances (such as uptime of the common part and/or end products, utilization, individual cost factor, and total system cost). Our decision-support model offers in-depth managerial insights for manufacturing and operations planning in a wide variety of contemporary industries, such as household merchandise, clothing, and automotive.

Suggested Citation

  • Singa Wang Chiu & Liang-Wei You & Tsu-Ming Yeh & Tiffany Chiu, 2020. "The Collective Influence of Component Commonality, Adjustable-Rate, Postponement, and Rework on Multi-Item Manufacturing Decision," Mathematics, MDPI, vol. 8(9), pages 1-18, September.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:9:p:1570-:d:412418
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/9/1570/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/9/1570/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. de Kok, A. G., 1987. "Approximations for operating characteristics in a production-inventory model with variable production rate," European Journal of Operational Research, Elsevier, vol. 29(3), pages 286-297, June.
    2. Palos-Sanchez, Pedro & Saura, Jose Ramon & Martin-Velicia, Felix, 2019. "A study of the effects of programmatic advertising on users' concerns about privacy overtime," Journal of Business Research, Elsevier, vol. 96(C), pages 61-72.
    3. Hans Sebastian Heese & Jayashankar M. Swaminathan, 2006. "Product Line Design with Component Commonality and Cost-Reduction Effort," Manufacturing & Service Operations Management, INFORMS, vol. 8(2), pages 206-219, May.
    4. Chiu, Singa Wang & Wu, Cheng-Sian & Tseng, Chao-Tang, 2019. "Incorporating an expedited rate, rework, and a multi-shipment policy into a multi-item stock refilling system," Operations Research Perspectives, Elsevier, vol. 6(C).
    5. Fakher, Hossein Beheshti & Nourelfath, Mustapha & Gendreau, Michel, 2018. "Integrating production, maintenance and quality: A multi-period multi-product profit-maximization model," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 191-201.
    6. G. Rius-Sorolla & J. Maheut & Jairo R. Coronado-Hernandez & J. P. Garcia-Sabater, 2020. "Lagrangian relaxation of the generic materials and operations planning model," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 105-123, March.
    7. Ngniatedema, Thomas & Fono, Louis Aimé & Mbondo, Georges Dieudonné, 2015. "A delayed product customization cost model with supplier delivery performance," European Journal of Operational Research, Elsevier, vol. 243(1), pages 109-119.
    8. Chan, Chi Kin & Wong, Wai Him & Langevin, A. & Lee, Y.C.E., 2017. "An integrated production-inventory model for deteriorating items with consideration of optimal production rate and deterioration during delivery," International Journal of Production Economics, Elsevier, vol. 189(C), pages 1-13.
    9. Chang Wook Kang & Misbah Ullah & Mitali Sarkar & Muhammad Omair & Biswajit Sarkar, 2019. "A Single-Stage Manufacturing Model with Imperfect Items, Inspections, Rework, and Planned Backorders," Mathematics, MDPI, vol. 7(5), pages 1-18, May.
    10. Daniel Granot & Shuya Yin, 2008. "Price and Order Postponement in a Decentralized Newsvendor Model with Multiplicative and Price-Dependent Demand," Operations Research, INFORMS, vol. 56(1), pages 121-139, February.
    11. Fernando Bernstein & Gregory A. DeCroix & Yulan Wang, 2011. "The Impact of Demand Aggregation Through Delayed Component Allocation in an Assemble-to-Order System," Management Science, INFORMS, vol. 57(6), pages 1154-1171, June.
    12. Hau L. Lee, 1992. "Lot Sizing to Reduce Capacity Utilization in a Production Process with Defective Items, Process Corrections, and Rework," Management Science, INFORMS, vol. 38(9), pages 1314-1328, September.
    13. Jabbarzadeh, Armin & Haughton, Michael & Pourmehdi, Fahime, 2019. "A robust optimization model for efficient and green supply chain planning with postponement strategy," International Journal of Production Economics, Elsevier, vol. 214(C), pages 266-283.
    14. Biswajit Sarkar & Mehran Ullah & Seok-Beom Choi, 2019. "Joint Inventory and Pricing Policy for an Online to Offline Closed-Loop Supply Chain Model with Random Defective Rate and Returnable Transport Items," Mathematics, MDPI, vol. 7(6), pages 1-20, June.
    15. Muhammad Tayyab & Biswajit Sarkar & Misbah Ullah, 2018. "Sustainable Lot Size in a Multistage Lean-Green Manufacturing Process under Uncertainty," Mathematics, MDPI, vol. 7(1), pages 1-18, December.
    16. Weskamp, Christoph & Koberstein, Achim & Schwartz, Frank & Suhl, Leena & Voß, Stefan, 2019. "A two-stage stochastic programming approach for identifying optimal postponement strategies in supply chains with uncertain demand," Omega, Elsevier, vol. 83(C), pages 123-138.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Jun & Du, Gang & Jiao, Roger J., 2021. "Optimal postponement contracting decisions in crowdsourced manufacturing: A three-level game-theoretic model for product family architecting considering subcontracting," European Journal of Operational Research, Elsevier, vol. 291(2), pages 722-737.
    2. Kinshuk Jerath & Sang-Hyun Kim & Robert Swinney, 2017. "Product Quality in a Distribution Channel with Inventory Risk," Marketing Science, INFORMS, vol. 36(5), pages 747-761, September.
    3. Monica Aureliana Petcu & Liliana Ionescu-Feleaga & Bogdan-Ștefan Ionescu & Dumitru-Florin Moise, 2023. "A Decade for the Mathematics : Bibliometric Analysis of Mathematical Modeling in Economics, Ecology, and Environment," Mathematics, MDPI, vol. 11(2), pages 1-30, January.
    4. Caliskan Demirag, Ozgun & Xue, Weili & Wang, Jie, 2021. "Retailers’ Order Timing Strategies under Competition and Demand Uncertainty," Omega, Elsevier, vol. 101(C).
    5. Deng Li & Ying Peng & Chunxiang Guo & Ruwen Tan, 2019. "Pricing Strategy of Construction and Demolition Waste Considering Retailer Fairness Concerns under a Governmental Regulation Environment," IJERPH, MDPI, vol. 16(20), pages 1-24, October.
    6. J. F. F. Almeida & S. V. Conceição & L. R. Pinto & B. R. P. Oliveira & L. F. Rodrigues, 2022. "Optimal sales and operations planning for integrated steel industries," Annals of Operations Research, Springer, vol. 315(2), pages 773-790, August.
    7. Khouja, Moutaz & Hammami, Ramzi, 2023. "Optimizing price, order quantity, and return policy in the presence of consumer opportunistic behavior for online retailers," European Journal of Operational Research, Elsevier, vol. 309(2), pages 683-703.
    8. K-L Hou, 2005. "Optimal production run length for deteriorating production system with a two-state continuous-time Markovian processes under allowable shortages," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(3), pages 346-350, March.
    9. Jalali, Hamed & Carmen, Raïsa & Van Nieuwenhuyse, Inneke & Boute, Robert, 2019. "Quality and pricing decisions in production/inventory systems," European Journal of Operational Research, Elsevier, vol. 272(1), pages 195-206.
    10. Sudip Adak & G. S. Mahapatra, 2021. "Effect of inspection and rework of probabilistic defective production on two-layer supply chain incorporating deterioration and reliability dependent demand," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(3), pages 565-578, June.
    11. Willem van Jaarsveld & Alan Scheller-Wolf, 2015. "Optimization of Industrial-Scale Assemble-to-Order Systems," INFORMS Journal on Computing, INFORMS, vol. 27(3), pages 544-560, August.
    12. Tao, Liangyan & Liu, Sifeng & Xie, Naiming & Javed, Saad Ahmed, 2021. "Optimal position of supply chain delivery window with risk-averse suppliers: A CVaR optimization approach," International Journal of Production Economics, Elsevier, vol. 232(C).
    13. Robaina-Calderín, Lorena & Martín-Santana, Josefa D. & Melián-Alzola, Lucía, 2023. "Prosocial customer in the public sector: A PLS-SEM analysis applied to blood donation (active donors)," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    14. Cheah, Jun-Hwa & Lim, Xin-Jean & Ting, Hiram & Liu, Yide & Quach, Sara, 2022. "Are privacy concerns still relevant? Revisiting consumer behaviour in omnichannel retailing," Journal of Retailing and Consumer Services, Elsevier, vol. 65(C).
    15. Sudip Adak & G. S. Mahapatra, 2022. "Effect of reliability on multi-item inventory system with shortages and partial backlog incorporating time dependent demand and deterioration," Annals of Operations Research, Springer, vol. 315(2), pages 1551-1571, August.
    16. Chung‐Yee Lee & Xi Li & Mingzhu Yu, 2015. "The loss‐averse newsvendor problem with supply options," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(1), pages 46-59, February.
    17. Maria Mayorga & Hyun-Soo Ahn & Goker Aydin, 2013. "Assortment and inventory decisions with multiple quality levels," Annals of Operations Research, Springer, vol. 211(1), pages 301-331, December.
    18. DeYong, Gregory D. & Pun, Hubert, 2015. "Is dishonesty the best policy? Supplier behaviour in a multi-tier supply chain," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 1-13.
    19. Banerjee, Syagnik & Xu, Shichun & Johnson, Scott D., 2021. "How does location based marketing affect mobile retail revenues? The complex interplay of delivery tactic, interface mobility and user privacy," Journal of Business Research, Elsevier, vol. 130(C), pages 398-404.
    20. Jinfa Chen & David D. Yao & Shaohui Zheng, 2001. "Optimal Replenishment and Rework with Multiple Unreliable Supply Sources," Operations Research, INFORMS, vol. 49(3), pages 430-443, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:9:p:1570-:d:412418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.