IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i17p2705-d1730378.html
   My bibliography  Save this article

Return Level Prediction with a New Mixture Extreme Value Model

Author

Listed:
  • Emrah Altun

    (Department of Statistics, Gazi University, Ankara 06560, Turkey)

  • Hana N. Alqifari

    (Department of Statistics and Operations Research, College of Science, Qassim University, Buraydah 51482, Saudi Arabia)

  • Kadir Söyler

    (Department of Mathematics, Bartin University, Bartin 74100, Turkey)

Abstract

The generalized Pareto distribution is frequently used for modeling extreme values above an appropriate threshold level. Since the process of determining the appropriate threshold value is difficult, a mixture of extreme value models rises to prominence. In this study, mixture extreme value models based on exponentiated Pareto distribution are proposed. The Weibull, gamma, and log-normal models are used as bulk densities. The parameter estimates of the proposed models are obtained using the maximum likelihood approach. Two different approaches based on maximization of the log-likelihood and Kolmogorov–Smirnov p -value are used to determine the appropriate threshold value. The effectiveness of these methods is compared using simulation studies. The proposed models are compared with other mixture models through an application study on earthquake data. The GammaEP web application is developed to ensure the reproducibility of the results and the usability of the proposed model.

Suggested Citation

  • Emrah Altun & Hana N. Alqifari & Kadir Söyler, 2025. "Return Level Prediction with a New Mixture Extreme Value Model," Mathematics, MDPI, vol. 13(17), pages 1-24, August.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:17:p:2705-:d:1730378
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/17/2705/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/17/2705/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    2. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    3. Li, Yunxian & Tang, Niansheng & Jiang, Xuejun, 2016. "Bayesian approaches for analyzing earthquake catastrophic risk," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 110-119.
    4. M.‐O. Boldi & A. C. Davison, 2007. "A mixture model for multivariate extremes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 217-229, April.
    5. David Walshaw & Clive W. Anderson, 2000. "A model for extreme wind gusts," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(4), pages 499-508.
    6. MacDonald, A. & Scarrott, C.J. & Lee, D. & Darlow, B. & Reale, M. & Russell, G., 2011. "A flexible extreme value mixture model," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2137-2157, June.
    7. Caston Sigauke & Thakhani Ravele & Lordwell Jhamba, 2022. "Extremal Dependence Modelling of Global Horizontal Irradiance with Temperature and Humidity: An Application Using South African Data," Energies, MDPI, vol. 15(16), pages 1-25, August.
    8. Meng Zhang & Hua Pan, 2021. "Application of generalized Pareto distribution for modeling aleatory variability of ground motion," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 2971-2989, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. González-Sánchez, Mariano & Nave Pineda, Juan M., 2023. "Where is the distribution tail threshold? A tale on tail and copulas in financial risk measurement," International Review of Financial Analysis, Elsevier, vol. 86(C).
    2. Chiara Lattanzi & Manuele Leonelli, 2019. "A changepoint approach for the identification of financial extreme regimes," Papers 1902.09205, arXiv.org.
    3. Schaumburg, Julia, 2012. "Predicting extreme value at risk: Nonparametric quantile regression with refinements from extreme value theory," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4081-4096.
    4. Lee, J. & Fan, Y. & Sisson, S.A., 2015. "Bayesian threshold selection for extremal models using measures of surprise," Computational Statistics & Data Analysis, Elsevier, vol. 85(C), pages 84-99.
    5. So, Mike K.P. & Chan, Raymond K.S., 2014. "Bayesian analysis of tail asymmetry based on a threshold extreme value model," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 568-587.
    6. Sonia Benito & Carmen López-Martín & Mª Ángeles Navarro, 2023. "Assessing the importance of the choice threshold in quantifying market risk under the POT approach (EVT)," Risk Management, Palgrave Macmillan, vol. 25(1), pages 1-31, March.
    7. Sofiane Aboura, 2014. "When the U.S. Stock Market Becomes Extreme?," Risks, MDPI, vol. 2(2), pages 1-15, May.
    8. Fátima Brilhante, M. & Ivette Gomes, M. & Pestana, Dinis, 2013. "A simple generalisation of the Hill estimator," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 518-535.
    9. Berens, Tobias & Weiß, Gregor N.F. & Wied, Dominik, 2015. "Testing for structural breaks in correlations: Does it improve Value-at-Risk forecasting?," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 135-152.
    10. Alex Huang, 2013. "Value at risk estimation by quantile regression and kernel estimator," Review of Quantitative Finance and Accounting, Springer, vol. 41(2), pages 225-251, August.
    11. Xi, Yanhui & Peng, Hui & Qin, Yemei & Xie, Wenbiao & Chen, Xiaohong, 2015. "Bayesian analysis of heavy-tailed market microstructure model and its application in stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 117(C), pages 141-153.
    12. Dimitrakopoulos, Dimitris N. & Kavussanos, Manolis G. & Spyrou, Spyros I., 2010. "Value at risk models for volatile emerging markets equity portfolios," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(4), pages 515-526, November.
    13. Qifa Xu & Lu Chen & Cuixia Jiang & Yezheng Liu, 2022. "Forecasting expected shortfall and value at risk with a joint elicitable mixed data sampling model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 407-421, April.
    14. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    15. Luo, Weiwei & Brooks, Robert D. & Silvapulle, Param, 2011. "Effects of the open policy on the dependence between the Chinese 'A' stock market and other equity markets: An industry sector perspective," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 21(1), pages 49-74, February.
    16. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.
    17. Ivanilda Cabral & Frederico Caeiro & M. Ivette Gomes, 2022. "On the comparison of several classical estimators of the extreme value index," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 51(1), pages 179-196, January.
    18. Ibrahim Ergen, 2014. "Tail dependence and diversification benefits in emerging market stocks: an extreme value theory approach," Applied Economics, Taylor & Francis Journals, vol. 46(19), pages 2215-2227, July.
    19. H. Kaibuchi & Y. Kawasaki & G. Stupfler, 2022. "GARCH-UGH: a bias-reduced approach for dynamic extreme Value-at-Risk estimation in financial time series," Quantitative Finance, Taylor & Francis Journals, vol. 22(7), pages 1277-1294, July.
    20. Martins-Filho, Carlos & Yao, Feng & Torero, Maximo, 2018. "Nonparametric Estimation Of Conditional Value-At-Risk And Expected Shortfall Based On Extreme Value Theory," Econometric Theory, Cambridge University Press, vol. 34(1), pages 23-67, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:17:p:2705-:d:1730378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.