IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v51y2022i1p179-196.html
   My bibliography  Save this article

On the comparison of several classical estimators of the extreme value index

Author

Listed:
  • Ivanilda Cabral
  • Frederico Caeiro
  • M. Ivette Gomes

Abstract

Due to the fact that for heavy tails the classical Hill estimator of a positive extreme value index is asymptotically biased, new and interesting alternative estimators have appeared in the literature. In this work we compare several classical estimators of the extreme value index based on moments of the upper order statistics. Since several alternative estimators have eventually a null asymptotic bias, for some heavy tailed models, the comparison is performed not only with the Hill and recent generalized means estimators but also with an asymptotically unbiased Hill estimator. The comparison study is performed asymptotically, under a third-order framework, and for finite samples, through a Monte Carlo simulation study.

Suggested Citation

  • Ivanilda Cabral & Frederico Caeiro & M. Ivette Gomes, 2022. "On the comparison of several classical estimators of the extreme value index," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 51(1), pages 179-196, January.
  • Handle: RePEc:taf:lstaxx:v:51:y:2022:i:1:p:179-196
    DOI: 10.1080/03610926.2020.1746970
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2020.1746970
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2020.1746970?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fátima Brilhante, M. & Ivette Gomes, M. & Pestana, Dinis, 2013. "A simple generalisation of the Hill estimator," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 518-535.
    2. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    3. Tsourti, Zoi & Panaretos, John, 2003. "Extreme Value Index Estimators and Smoothing Alternatives: A Critical Review," MPRA Paper 6390, University Library of Munich, Germany.
    4. L. De Haan & L. Peng, 1998. "Comparison of tail index estimators," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 52(1), pages 60-70, March.
    5. Gomes, M. Ivette & Pestana, Dinis, 2007. "A Sturdy Reduced-Bias Extreme Quantile (VaR) Estimator," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 280-292, March.
    6. Einmahl, J. H.J. & Dekkers, A. L.M. & de Haan, L., 1989. "A moment estimator for the index of an extreme-value distribution," Other publications TiSEM 81970cb3-5b7a-4cad-9bf6-2, Tilburg University, School of Economics and Management.
    7. M. Ivette Gomes & Armelle Guillou, 2015. "Extreme Value Theory and Statistics of Univariate Extremes: A Review," International Statistical Review, International Statistical Institute, vol. 83(2), pages 263-292, August.
    8. Jan Beran & Dieter Schell & Milan Stehlík, 2014. "The harmonic moment tail index estimator: asymptotic distribution and robustness," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(1), pages 193-220, February.
    9. Frederico Caeiro & M. Ivette Gomes, 2011. "Asymptotic comparison at optimal levels of reduced‐bias extreme value index estimators," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 65(4), pages 462-488, November.
    10. Gomes, M. Ivette & Neves, Cláudia, 2008. "Asymptotic comparison of the mixed moment and classical extreme value index estimators," Statistics & Probability Letters, Elsevier, vol. 78(6), pages 643-653, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lígia Henriques-Rodrigues & Frederico Caeiro & M. Ivette Gomes, 2024. "A New Class of Reduced-Bias Generalized Hill Estimators," Mathematics, MDPI, vol. 12(18), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    2. Lígia Henriques-Rodrigues & Frederico Caeiro & M. Ivette Gomes, 2024. "A New Class of Reduced-Bias Generalized Hill Estimators," Mathematics, MDPI, vol. 12(18), pages 1-18, September.
    3. Vygantas Paulauskas & Marijus Vaičiulis, 2017. "A class of new tail index estimators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(2), pages 461-487, April.
    4. Emanuele Taufer & Flavio Santi & Pier Luigi Novi Inverardi & Giuseppe Espa & Maria Michela Dickson, 2020. "Extreme Value Index Estimation by Means of an Inequality Curve," Mathematics, MDPI, vol. 8(10), pages 1-17, October.
    5. Gomes, M. Ivette & Brilhante, M. Fátima & Caeiro, Frederico & Pestana, Dinis, 2015. "A new partially reduced-bias mean-of-order p class of extreme value index estimators," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 223-237.
    6. Fátima Brilhante, M. & Ivette Gomes, M. & Pestana, Dinis, 2013. "A simple generalisation of the Hill estimator," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 518-535.
    7. M. Ivette Gomes & Armelle Guillou, 2015. "Extreme Value Theory and Statistics of Univariate Extremes: A Review," International Statistical Review, International Statistical Institute, vol. 83(2), pages 263-292, August.
    8. Gomes, M. Ivette & Henriques-Rodrigues, Lígia, 2016. "Competitive estimation of the extreme value index," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 128-135.
    9. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    10. Xia Yang & Jing Zhang & Wei-Xin Ren, 2018. "Threshold selection for extreme value estimation of vehicle load effect on bridges," International Journal of Distributed Sensor Networks, , vol. 14(2), pages 15501477187, February.
    11. Ghosh, Souvik & Resnick, Sidney, 2010. "A discussion on mean excess plots," Stochastic Processes and their Applications, Elsevier, vol. 120(8), pages 1492-1517, August.
    12. Wager, Stefan, 2014. "Subsampling extremes: From block maxima to smooth tail estimation," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 335-353.
    13. Geluk, J. L. & Peng, Liang, 2000. "An adaptive optimal estimate of the tail index for MA(l) time series," Statistics & Probability Letters, Elsevier, vol. 46(3), pages 217-227, February.
    14. Tjeerd de Vries & Alexis Akira Toda, 2022. "Capital and Labor Income Pareto Exponents Across Time and Space," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 68(4), pages 1058-1078, December.
    15. Gomes, M. Ivette & Pestana, Dinis & Caeiro, Frederico, 2009. "A note on the asymptotic variance at optimal levels of a bias-corrected Hill estimator," Statistics & Probability Letters, Elsevier, vol. 79(3), pages 295-303, February.
    16. Ahmed, Hanan, 2022. "Extreme value statistics using related variables," Other publications TiSEM 246f0f13-701c-4c0d-8e09-e, Tilburg University, School of Economics and Management.
    17. Hsieh, Ping-Hung, 2002. "An exploratory first step in teletraffic data modeling: evaluation of long-run performance of parameter estimators," Computational Statistics & Data Analysis, Elsevier, vol. 40(2), pages 263-283, August.
    18. Christian Schluter, 2021. "On Zipf’s law and the bias of Zipf regressions," Empirical Economics, Springer, vol. 61(2), pages 529-548, August.
    19. Yongcheng Qi, 2010. "On the tail index of a heavy tailed distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(2), pages 277-298, April.
    20. Beirlant, J. & Bouquiaux, C. & Werker, B.J.M., 2006. "Semiparametric lower bounds for tail-index estimation," Other publications TiSEM 4f434455-72a7-4b68-b972-d, Tilburg University, School of Economics and Management.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:51:y:2022:i:1:p:179-196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.