IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v14y2018i2p1550147718757698.html
   My bibliography  Save this article

Threshold selection for extreme value estimation of vehicle load effect on bridges

Author

Listed:
  • Xia Yang
  • Jing Zhang
  • Wei-Xin Ren

Abstract

In the design and condition assessment of bridges, the extreme vehicle load effects are necessary to be taken into consideration, which may occur during the service period of bridges. In order to obtain an accurate extrapolation of the extreme value based on limited duration, threshold selection is a critical step in the peak-over-threshold method. Overly high threshold results in little information to be used and excessively low threshold leads to large bias in parameters estimation of generalized Pareto distribution. To investigate this issue, 417 days of strain data acquired from the long-term structural health monitoring system of Taiping Lake Bridge in China are employed in this article. According to the tail distribution of the strain data induced by vehicle loads, four homothetic distributions are chosen as its parent distribution, from which lots of random samples are generated by the Monte Carlo method. For each parent distribution, the 100-yearly extreme values at different thresholds are estimated and compared with the theoretical value based on those samples. Then a simple and empirical threshold selection method is proposed and applied to estimate the weekly extreme strain due to vehicle loads on the Taiping Lake Bridge. Results show that the estimate on the basis of the threshold obtained by the proposed method is closer to the measured result than the commonly used methods. The proposed method can be an effective threshold selection tool for the extreme value estimation of vehicle load effect in future engineering practice.

Suggested Citation

  • Xia Yang & Jing Zhang & Wei-Xin Ren, 2018. "Threshold selection for extreme value estimation of vehicle load effect on bridges," International Journal of Distributed Sensor Networks, , vol. 14(2), pages 15501477187, February.
  • Handle: RePEc:sae:intdis:v:14:y:2018:i:2:p:1550147718757698
    DOI: 10.1177/1550147718757698
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147718757698
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147718757698?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fátima Brilhante, M. & Ivette Gomes, M. & Pestana, Dinis, 2013. "A simple generalisation of the Hill estimator," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 518-535.
    2. M. Ivette Gomes & Armelle Guillou, 2015. "Extreme Value Theory and Statistics of Univariate Extremes: A Review," International Statistical Review, International Statistical Institute, vol. 83(2), pages 263-292, August.
    3. Manfred Gilli & Evis këllezi, 2006. "An Application of Extreme Value Theory for Measuring Financial Risk," Computational Economics, Springer;Society for Computational Economics, vol. 27(2), pages 207-228, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chunli Huang & Xu Zhao & Weihu Cheng & Qingqing Ji & Qiao Duan & Yufei Han, 2022. "Statistical Inference of Dynamic Conditional Generalized Pareto Distribution with Weather and Air Quality Factors," Mathematics, MDPI, vol. 10(9), pages 1-25, April.
    2. Xin Gao & Gengxin Duan & Chunguang Lan, 2021. "Bayesian Updates for an Extreme Value Distribution Model of Bridge Traffic Load Effect Based on SHM Data," Sustainability, MDPI, vol. 13(15), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    2. Ivanilda Cabral & Frederico Caeiro & M. Ivette Gomes, 2022. "On the comparison of several classical estimators of the extreme value index," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 51(1), pages 179-196, January.
    3. Gomes, M. Ivette & Henriques-Rodrigues, Lígia, 2016. "Competitive estimation of the extreme value index," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 128-135.
    4. Emanuele Taufer & Flavio Santi & Pier Luigi Novi Inverardi & Giuseppe Espa & Maria Michela Dickson, 2020. "Extreme Value Index Estimation by Means of an Inequality Curve," Mathematics, MDPI, vol. 8(10), pages 1-17, October.
    5. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    6. Amira Dridi & Mohamed El Ghourabi & Mohamed Limam, 2012. "On monitoring financial stress index with extreme value theory," Quantitative Finance, Taylor & Francis Journals, vol. 12(3), pages 329-339, March.
    7. Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
    8. M. Naresh Kumar & V. Sree Hari Rao, 2015. "A New Methodology for Estimating Internal Credit Risk and Bankruptcy Prediction under Basel II Regime," Computational Economics, Springer;Society for Computational Economics, vol. 46(1), pages 83-102, June.
    9. Frederico Caeiro & Ayana Mateus, 2023. "A New Class of Generalized Probability-Weighted Moment Estimators for the Pareto Distribution," Mathematics, MDPI, vol. 11(5), pages 1-17, February.
    10. Ji Hyung Lee & Yuya Sasaki & Alexis Akira Toda & Yulong Wang, 2022. "Capital and Labor Income Pareto Exponents in the United States, 1916-2019," Papers 2206.04257, arXiv.org.
    11. Kathrin Kirchen & William Harbert & Jay Apt & M. Granger Morgan, 2020. "A Solar‐Centric Approach to Improving Estimates of Exposure Processes for Coronal Mass Ejections," Risk Analysis, John Wiley & Sons, vol. 40(5), pages 1020-1039, May.
    12. Ahmad Aboubacrène Ag & Deme El Hadji & Diop Aliou & Girard Stéphane, 2019. "Estimation of the tail-index in a conditional location-scale family of heavy-tailed distributions," Dependence Modeling, De Gruyter, vol. 7(1), pages 394-417, January.
    13. Xin Chen & Zhangming Shan & Decai Tang & Biao Zhou & Valentina Boamah, 2023. "Interest rate risk of Chinese commercial banks based on the GARCH-EVT model," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-11, December.
    14. Chao Wang & Richard Gerlach, 2019. "Semi-parametric Realized Nonlinear Conditional Autoregressive Expectile and Expected Shortfall," Papers 1906.09961, arXiv.org.
    15. Jian Zhou, 2012. "Extreme risk measures for REITs: a comparison among alternative methods," Applied Financial Economics, Taylor & Francis Journals, vol. 22(2), pages 113-126, January.
    16. Giuseppe Storti & Chao Wang, 2023. "Modeling uncertainty in financial tail risk: A forecast combination and weighted quantile approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1648-1663, November.
    17. Gonzales-Martínez, Rolando, 2008. "Medidas de Riesgo Financiero y una Aplicación a las Variaciones de Depósitos del Sistema Financiero Boliviano [Risk Measures and an Application to the Withdrawals of Deposits in the Bolivian Financ," MPRA Paper 14700, University Library of Munich, Germany.
    18. Mizgier, Kamil J. & Hora, Manpreet & Wagner, Stephan M. & Jüttner, Matthias P., 2015. "Managing operational disruptions through capital adequacy and process improvement," European Journal of Operational Research, Elsevier, vol. 245(1), pages 320-332.
    19. Salhi, Khaled & Deaconu, Madalina & Lejay, Antoine & Champagnat, Nicolas & Navet, Nicolas, 2016. "Regime switching model for financial data: Empirical risk analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 148-157.
    20. Bi, Guang & Giles, David E., 2009. "Modelling the financial risk associated with U.S. movie box office earnings," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(9), pages 2759-2766.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:14:y:2018:i:2:p:1550147718757698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.