IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i18p3233-d907968.html
   My bibliography  Save this article

Sensor-Based Prognostic Health Management of Advanced Driver Assistance System for Autonomous Vehicles: A Recent Survey

Author

Listed:
  • Izaz Raouf

    (Department of Mechanical, Robotics and Energy Engineering, Dongguk University–Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Korea)

  • Asif Khan

    (Faculty of Mechanical Engineering, Ghulam Ishaq Khan Institute of Engineering and Science and Technology, Topi, Swabi 23460, Khyber Pakhtunkhwa, Pakistan)

  • Salman Khalid

    (Department of Mechanical, Robotics and Energy Engineering, Dongguk University–Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Korea)

  • Muhammad Sohail

    (Department of Mechanical, Robotics and Energy Engineering, Dongguk University–Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Korea)

  • Muhammad Muzammil Azad

    (Department of Mechanical, Robotics and Energy Engineering, Dongguk University–Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Korea)

  • Heung Soo Kim

    (Department of Mechanical, Robotics and Energy Engineering, Dongguk University–Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Korea)

Abstract

Recently, the advanced driver assistance system (ADAS) of autonomous vehicles (AVs) has offered substantial benefits to drivers. Improvement of passenger safety is one of the key factors for evolving AVs. An automated system provided by the ADAS in autonomous vehicles is a salient feature for passenger safety in modern vehicles. With an increasing number of electronic control units and a combination of multiple sensors, there are now sufficient computing aptitudes in the car to support ADAS deployment. An ADAS is composed of various sensors: radio detection and ranging (RADAR), cameras, ultrasonic sensors, and LiDAR. However, continual use of multiple sensors and actuators of the ADAS can lead to failure of AV sensors. Thus, prognostic health management (PHM) of ADAS is important for smooth and continuous operation of AVs. The PHM of AVs has recently been introduced and is still progressing. There is a lack of surveys available related to sensor-based PHM of AVs in the literature. Therefore, the objective of the current study was to identify sensor-based PHM, emphasizing different fault identification and isolation (FDI) techniques with challenges and gaps existing in this field.

Suggested Citation

  • Izaz Raouf & Asif Khan & Salman Khalid & Muhammad Sohail & Muhammad Muzammil Azad & Heung Soo Kim, 2022. "Sensor-Based Prognostic Health Management of Advanced Driver Assistance System for Autonomous Vehicles: A Recent Survey," Mathematics, MDPI, vol. 10(18), pages 1-26, September.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:18:p:3233-:d:907968
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/18/3233/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/18/3233/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meyer-Waarden, Lars & Cloarec, Julien, 2022. "“Baby, you can drive my car”: Psychological antecedents that drive consumers’ adoption of AI-powered autonomous vehicles," Technovation, Elsevier, vol. 109(C).
    2. Zhi‐Sheng Ye & Min Xie, 2015. "Stochastic modelling and analysis of degradation for highly reliable products," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 31(1), pages 16-32, January.
    3. Saeed, Umer & Jan, Sana Ullah & Lee, Young-Doo & Koo, Insoo, 2021. "Fault diagnosis based on extremely randomized trees in wireless sensor networks," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    4. Qiuzhuang Sun & Zhi-Sheng Ye & Xiaoyan Zhu, 2020. "Managing component degradation in series systems for balancing degradation through reallocation and maintenance," IISE Transactions, Taylor & Francis Journals, vol. 52(7), pages 797-810, July.
    5. Lars Meyer-Waarden & Julien Cloarec, 2022. "“Baby, you can drive my car”: Psychological antecedents that drive consumers’ adoption of AI-powered autonomous vehicles," Post-Print hal-03385891, HAL.
    6. Monika Stoma & Agnieszka Dudziak & Jacek Caban & Paweł Droździel, 2021. "The Future of Autonomous Vehicles in the Opinion of Automotive Market Users," Energies, MDPI, vol. 14(16), pages 1-19, August.
    7. Nourinejad, Mehdi & Bahrami, Sina & Roorda, Matthew J., 2018. "Designing parking facilities for autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 110-127.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prashant Kumar & Salman Khalid & Heung Soo Kim, 2023. "Prognostics and Health Management of Rotating Machinery of Industrial Robot with Deep Learning Applications—A Review," Mathematics, MDPI, vol. 11(13), pages 1-37, July.
    2. Lili Zheng & Yanlin Zhang & Tongqiang Ding & Fanyun Meng & Yanlin Li & Shiyu Cao, 2022. "Classification of Driver Distraction Risk Levels: Based on Driver’s Gaze and Secondary Driving Tasks," Mathematics, MDPI, vol. 10(24), pages 1-23, December.
    3. Izaz Raouf & Prashant Kumar & Hyewon Lee & Heung Soo Kim, 2023. "Transfer Learning-Based Intelligent Fault Detection Approach for the Industrial Robotic System," Mathematics, MDPI, vol. 11(4), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Foroughi, Behzad & Nhan, Pham Viet & Iranmanesh, Mohammad & Ghobakhloo, Morteza & Nilashi, Mehrbakhsh & Yadegaridehkordi, Elaheh, 2023. "Determinants of intention to use autonomous vehicles: Findings from PLS-SEM and ANFIS," Journal of Retailing and Consumer Services, Elsevier, vol. 70(C).
    2. Wu, Min & Wang, Nanxi & Yuen, Kum Fai, 2023. "Can autonomy level and anthropomorphic characteristics affect public acceptance and trust towards shared autonomous vehicles?," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    3. Liu, Lujie & Yang, Jun & Yan, Bingxin, 2024. "A dynamic mission abort policy for transportation systems with stochastic dependence by deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    4. Rongbin Yang & Santoso Wibowo, 2022. "User trust in artificial intelligence: A comprehensive conceptual framework," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 2053-2077, December.
    5. Truong-Ba, Huy & Cholette, Michael E. & Rebello, Sinda & Kent, Geoff, 2024. "Joint planning of inspection, replacement, and component decommissioning for a series system with non-identically degrading components," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    6. P. V. Thayyib & Rajesh Mamilla & Mohsin Khan & Humaira Fatima & Mohd Asim & Imran Anwar & M. K. Shamsudheen & Mohd Asif Khan, 2023. "State-of-the-Art of Artificial Intelligence and Big Data Analytics Reviews in Five Different Domains: A Bibliometric Summary," Sustainability, MDPI, vol. 15(5), pages 1-38, February.
    7. Jun Wang & Yuyang Wang & Yuqiang Fu, 2023. "Joint Optimization of Condition-Based Maintenance and Performance Control for Linear Multi-State Consecutively Connected Systems," Mathematics, MDPI, vol. 11(12), pages 1-19, June.
    8. Liu, Xiaohui & He, Xiaoyu & Wang, Mengmeng & Shen, Huizhang, 2022. "What influences patients' continuance intention to use AI-powered service robots at hospitals? The role of individual characteristics," Technology in Society, Elsevier, vol. 70(C).
    9. Simona Mikšíková & David Ulčák & František Kuda, 2022. "Analysis of Malfunctions in Selected Parking Systems in the Czech Republic," Sustainability, MDPI, vol. 14(3), pages 1-10, February.
    10. Tscharaktschiew, Stefan & Reimann, Felix, 2021. "On employer-paid parking and parking (cash-out) policy: A formal synthesis of different perspectives," Transport Policy, Elsevier, vol. 110(C), pages 499-516.
    11. Song, Kai & Shi, Jian & Yi, Xiaojian, 2020. "A time-discrete and zero-adjusted gamma process model with application to degradation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    12. Chenhao Zhu & Jonah Susskind & Mario Giampieri & Hazel Backus O’Neil & Alan M. Berger, 2023. "Optimizing Sustainable Suburban Expansion with Autonomous Mobility through a Parametric Design Framework," Land, MDPI, vol. 12(9), pages 1-31, September.
    13. Zhang, Ao & Wang, Zhihua & Bao, Rui & Liu, Chengrui & Wu, Qiong & Cao, Shihao, 2023. "A novel failure time estimation method for degradation analysis based on general nonlinear Wiener processes," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    14. Wen, Yuxin & Wu, Jianguo & Das, Devashish & Tseng, Tzu-Liang(Bill), 2018. "Degradation modeling and RUL prediction using Wiener process subject to multiple change points and unit heterogeneity," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 113-124.
    15. Bhattacharjee, Vikram & Khan, Irfan, 2018. "A non-linear convex cost model for economic dispatch in microgrids," Applied Energy, Elsevier, vol. 222(C), pages 637-648.
    16. Chai, Huajun & Rodier, Caroline J. & Song, Jeffery W. & Zhang, Michael H. & Jaller, Miguel, 2023. "The impacts of automated vehicles on Center city parking," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    17. Sun, Fuqiang & Fu, Fangyou & Liao, Haitao & Xu, Dan, 2020. "Analysis of multivariate dependent accelerated degradation data using a random-effect general Wiener process and D-vine Copula," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    18. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    19. Wang, Xiaolin & Liu, Bin & Zhao, Xiujie, 2021. "A performance-based warranty for products subject to competing hard and soft failures," International Journal of Production Economics, Elsevier, vol. 233(C).
    20. Liu, Lujie & Yang, Jun, 2023. "A dynamic mission abort policy for the swarm executing missions and its solution method by tailored deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 234(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:18:p:3233-:d:907968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.