IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v175y2023ics0965856423001842.html
   My bibliography  Save this article

The impacts of automated vehicles on Center city parking

Author

Listed:
  • Chai, Huajun
  • Rodier, Caroline J.
  • Song, Jeffery W.
  • Zhang, Michael H.
  • Jaller, Miguel

Abstract

The potential for automated vehicles (AVs) to reduce parking in central cities has generated much excitement among urban planners. AVs could drop-off (DO), and pick-up (PU) passengers in areas where parking costs are high: personal AVs could return home or park in less expensive locations, and shared AVs could serve other passengers. Reduced on-street and off-street parking present numerous opportuni- ties for redevelopment that could improve the livability of cities, for example, more street and sidewalk space for pedestrian and bicycle travel. However, reduced de- mand for parking would be accompanied by increased demand for curbside DO/PU space with related movements to enter and exit the flow of traffic. This change could be particularly challenging for traffic flows in downtown urban areas during peak hours, where high volumes of DOs and PUs are likely to occur. Only limited research examines the travel effects of a shift from parking to DO/PU travel and the impact of changes in parking supply. Our study uses a microscopic road traffic model with local travel activity data to simulate personal AV parking scenarios in San Francisco’s downtown central business district (CBD). In these scenarios, we vary (1) the demand for DO and PU travel versus parking, (2) the supply of on-street and off-street parking, and (3) the total demand for parking and DO/PU travel due to an increase in the cost to travel to the CBD.

Suggested Citation

  • Chai, Huajun & Rodier, Caroline J. & Song, Jeffery W. & Zhang, Michael H. & Jaller, Miguel, 2023. "The impacts of automated vehicles on Center city parking," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
  • Handle: RePEc:eee:transa:v:175:y:2023:i:c:s0965856423001842
    DOI: 10.1016/j.tra.2023.103764
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856423001842
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2023.103764?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geroliminis, Nikolas, 2015. "Cruising-for-parking in congested cities with an MFD representation," Economics of Transportation, Elsevier, vol. 4(3), pages 156-165.
    2. Millard-Ball, Adam, 2019. "The autonomous vehicle parking problem," Transport Policy, Elsevier, vol. 75(C), pages 99-108.
    3. Imhof, Sebastian & Frölicher, Jonas & von Arx, Widar, 2020. "Shared Autonomous Vehicles in rural public transportation systems," Research in Transportation Economics, Elsevier, vol. 83(C).
    4. Zhang, Xiang & Liu, Wei & Waller, S. Travis & Yin, Yafeng, 2019. "Modelling and managing the integrated morning-evening commuting and parking patterns under the fully autonomous vehicle environment," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 380-407.
    5. Shoup, Donald C., 2006. "Cruising for Parking," University of California Transportation Center, Working Papers qt55s7079f, University of California Transportation Center.
    6. Albert, Gila & Mahalel, David, 2006. "Congestion tolls and parking fees: A comparison of the potential effect on travel behavior," Transport Policy, Elsevier, vol. 13(6), pages 496-502, November.
    7. Nourinejad, Mehdi & Bahrami, Sina & Roorda, Matthew J., 2018. "Designing parking facilities for autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 110-127.
    8. Kley, Fabian & Lerch, Christian & Dallinger, David, 2011. "New business models for electric cars--A holistic approach," Energy Policy, Elsevier, vol. 39(6), pages 3392-3403, June.
    9. Khordagui, Nagwa, 2019. "Parking prices and the decision to drive to work: Evidence from California," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 479-495.
    10. Rodier, Caroline & Jaller, Miguel & Pourrahmani, Elham & Bischoff, Joschka & Freedman, Joel & Pahwa, Anmol, 2018. "Automated Vehicle Scenarios: Simulation of System-Level Travel Effects Using Agent-Based Demand and Supply Models in the San Francisco Bay Area," Institute of Transportation Studies, Working Paper Series qt4dk3n531, Institute of Transportation Studies, UC Davis.
    11. Nourinejad, Mehdi & Roorda, Matthew J., 2017. "Impact of hourly parking pricing on travel demand," Transportation Research Part A: Policy and Practice, Elsevier, vol. 98(C), pages 28-45.
    12. Zhang, Wenwen & Wang, Kaidi, 2020. "Parking futures: Shared automated vehicles and parking demand reduction trajectories in Atlanta," Land Use Policy, Elsevier, vol. 91(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zipeng Zhang & Ning Zhang, 2021. "Early Bird Scheme for Parking Management: How Does Parking Play a Role in the Morning Commute Problem," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    2. Tscharaktschiew, Stefan & Reimann, Felix, 2021. "On employer-paid parking and parking (cash-out) policy: A formal synthesis of different perspectives," Transport Policy, Elsevier, vol. 110(C), pages 499-516.
    3. Bahrami, Sina & Roorda, Matthew, 2022. "Autonomous vehicle parking policies: A case study of the City of Toronto," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 283-296.
    4. Chenhao Zhu & Jonah Susskind & Mario Giampieri & Hazel Backus O’Neil & Alan M. Berger, 2023. "Optimizing Sustainable Suburban Expansion with Autonomous Mobility through a Parametric Design Framework," Land, MDPI, vol. 12(9), pages 1-31, September.
    5. Francis Ostermeijer & Hans RA Koster & Leonardo Nunes & Jos van Ommeren, 2021. "Citywide parking policy and traffic: Evidence from Amsterdam," Tinbergen Institute Discussion Papers 21-015/VIII, Tinbergen Institute.
    6. Lehner, Stephan & Peer, Stefanie, 2019. "The price elasticity of parking: A meta-analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 177-191.
    7. Tang, Zhe-Yi & Tian, Li-Jun & Wang, David Z.W., 2021. "Multi-modal morning commute with endogenous shared autonomous vehicle penetration considering parking space constraint," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    8. Gu, Ziyuan & Li, Yifan & Saberi, Meead & Rashidi, Taha H. & Liu, Zhiyuan, 2023. "Macroscopic parking dynamics and equitable pricing: Integrating trip-based modeling with simulation-based robust optimization," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 354-381.
    9. Gu, Ziyuan & Safarighouzhdi, Farshid & Saberi, Meead & Rashidi, Taha H., 2021. "A macro-micro approach to modeling parking," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 220-244.
    10. Winter, Konstanze & Cats, Oded & Martens, Karel & van Arem, Bart, 2021. "Parking space for shared automated vehicles: How less can be more," Transportation Research Part A: Policy and Practice, Elsevier, vol. 143(C), pages 61-77.
    11. Parmar, Janak & Saiyed, Gulnazbanu & Dave, Sanjaykumar, 2023. "Analysis of taste heterogeneity in commuters’ travel decisions using joint parking– and mode–choice model: A case from urban India," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    12. You Kong & Jihong Ou & Longfei Chen & Fengchun Yang & Bo Yu, 2023. "The Environmental Impacts of Automated Vehicles on Parking: A Systematic Review," Sustainability, MDPI, vol. 15(20), pages 1-21, October.
    13. Janak Parmar & Gulnazbanu Saiyed & Sanjaykumar Dave, 2021. "Analysis of taste heterogeneity in commuters travel decisions using joint parking and mode choice model: A case from urban India," Papers 2109.01045, arXiv.org, revised Oct 2023.
    14. Fan Wu & Wei Ma, 2022. "Clustering Analysis of the Spatio-Temporal On-Street Parking Occupancy Data: A Case Study in Hong Kong," Sustainability, MDPI, vol. 14(13), pages 1-25, June.
    15. Simona Mikšíková & David Ulčák & František Kuda, 2022. "Analysis of Malfunctions in Selected Parking Systems in the Czech Republic," Sustainability, MDPI, vol. 14(3), pages 1-10, February.
    16. Ostermeijer, Francis & Koster, Hans & Nunes, Leonardo & van Ommeren, Jos, 2022. "Citywide parking policy and traffic: Evidence from Amsterdam," Journal of Urban Economics, Elsevier, vol. 128(C).
    17. Ottosson, Dadi Baldur & Chen, Cynthia & Wang, Tingting & Lin, Haiyun, 2013. "The sensitivity of on-street parking demand in response to price changes: A case study in Seattle, WA," Transport Policy, Elsevier, vol. 25(C), pages 222-232.
    18. Jun Li & Sifan Wu & Xiaoman Feng, 2021. "Optimization of On-Street Parking Charges Based on Price Elasticity of the Expected Perceived Parking Cost," Sustainability, MDPI, vol. 13(10), pages 1-13, May.
    19. Milosavljević, Nada & Simićević, Jelena, 2016. "User response to parking policy change: A comparison of stated and revealed preference data," Transport Policy, Elsevier, vol. 46(C), pages 40-45.
    20. Geva, Sharon & Fulman, Nir & Ben-Elia, Eran, 2022. "Getting the prices right: Drivers' cruising choices in a serious parking game," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 54-75.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:175:y:2023:i:c:s0965856423001842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.