Energy Utilization and Greenhouse Gas (GHG) Emissions of Tillage Operation in Wetland Rice Cultivation
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Baruah, D. C. & Das, P. K. & Dutta, P. K., 2004. "Present status and future demand for energy for bullock-operated paddy-farms in Assam (India)," Applied Energy, Elsevier, vol. 79(2), pages 145-157, October.
- Barut, Zeliha Bereket & Ertekin, Can & Karaagac, Hasan Ali, 2011. "Tillage effects on energy use for corn silage in Mediterranean Coastal of Turkey," Energy, Elsevier, vol. 36(9), pages 5466-5475.
- Elsoragaby, Suha & Yahya, Azmi & Mahadi, Muhammad Razif & Nawi, Nazmi Mat & Mairghany, Modather, 2019. "Analysis of energy use and greenhouse gas emissions (GHG) of transplanting and broadcast seeding wetland rice cultivation," Energy, Elsevier, vol. 189(C).
- Yuan, Shen & Peng, Shaobing, 2017. "Input-output energy analysis of rice production in different crop management practices in central China," Energy, Elsevier, vol. 141(C), pages 1124-1132.
- Šarauskis, Egidijus & Buragienė, Sidona & Masilionytė, Laura & Romaneckas, Kęstutis & Avižienytė, Dovile & Sakalauskas, Antanas, 2014. "Energy balance, costs and CO2 analysis of tillage technologies in maize cultivation," Energy, Elsevier, vol. 69(C), pages 227-235.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yang, Zhiyuan & Zhu, Yuemei & Zhang, Xiaoli & Liao, Qin & Fu, Hao & Cheng, Qingyue & Chen, Zongkui & Sun, Yongjian & Ma, Jun & Zhang, Jinyue & Li, Liangyu & Li, Na, 2023. "Unmanned aerial vehicle direct seeding or integrated mechanical transplanting, which will be the next step for mechanized rice production in China? —A comparison based on energy use efficiency and eco," Energy, Elsevier, vol. 273(C).
- Yang, Zhiyuan & Zhu, Yuemei & Zhang, Jinyue & Li, Xuyi & Ma, Peng & Sun, Jiawei & Sun, Yongjian & Ma, Jun & Li, Na, 2022. "Comparison of energy use between fully mechanized and semi-mechanized rice production in Southwest China," Energy, Elsevier, vol. 245(C).
- Houshyar, Ehsan & Zareifard, Hamid Reza & Grundmann, Philipp & Smith, Pete, 2015. "Determining efficiency of energy input for silage corn production: An econometric approach," Energy, Elsevier, vol. 93(P2), pages 2166-2174.
- Sergio Juárez-Hernández & Claudia Sheinbaum Pardo, 2020. "Assessing the potential of alternative farming practices for sustainable energy and water use and GHG mitigation in conventional maize systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 8029-8059, December.
- Yan, Jie & Kong, Zhaoyang & Liu, Yize & Li, Ning & Yang, Xiaolin & Zhuang, Minghao, 2023. "A high-resolution energy use efficiency assessment of China’s staple food crop production and associated improvement potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Pawlak, Jan, 2018. "Assessment of economic effects of GHG emission reduction on the example of field crop farms," Problems of Agricultural Economics / Zagadnienia Ekonomiki Rolnej 276380, Institute of Agricultural and Food Economics - National Research Institute (IAFE-NRI).
- Šarauskis, Egidijus & Vaitauskienė, Kristina & Romaneckas, Kęstutis & Jasinskas, Algirdas & Butkus, Vidmantas & Kriaučiūnienė, Zita, 2017. "Fuel consumption and CO2 emission analysis in different strip tillage scenarios," Energy, Elsevier, vol. 118(C), pages 957-968.
- Martinho, Vítor João Pereira Domingues, 2021. "Direct and indirect energy consumption in farming: Impacts from fertilizer use," Energy, Elsevier, vol. 236(C).
- Fu, Hao & Li, Na & Cheng, Qingyue & Liao, Qin & Nie, Jiangxia & Yin, Huilai & Shu, Chuanhai & Li, Leilei & Wang, Zhonglin & Sun, Yongjian & Chen, Zongkui & Ma, Jun & Zhang, Xiaoli & Li, Liangyu & Yang, 2024. "Energy, environmental, and economic benefits of integrated paddy field farming," Energy, Elsevier, vol. 297(C).
- Tutar, Halit & Eren, Ömer & Er, Hasan & Gonulal, Erdal & Gokdogan, Osman, 2025. "Field-based experimental greenhouse gas emissions and energy use efficiency study of sorghum x sudan grass hybrid growth in a semi-arid region," Energy, Elsevier, vol. 315(C).
- Zhang, Yang & Zhang, Yan & Gao, Yan & McLaughlin, Neil B. & Huang, Dandan & Wang, Yang & Chen, Xuewen & Zhang, Shixiu & Liang, Aizhen, 2024. "Effects of tillage practices on environment, energy, and economy of maize production in Northeast China," Agricultural Systems, Elsevier, vol. 215(C).
- Justinas Anušauskas & Andrius Grigas & Kristina Lekavičienė & Ernestas Zaleckas & Simona Paulikienė & Dainius Steponavičius, 2024. "Energy and Environmental Assessment of Bacteria-Inoculated Mineral Fertilizer Used in Spring Barley Cultivation Technologies," Agriculture, MDPI, vol. 14(4), pages 1-22, April.
- Mykola Kochiieru & Agnė Veršulienė & Virginijus Feiza & Dalia Feizienė, 2023. "Trend for Soil CO 2 Efflux in Grassland and Forest Land in Relation with Meteorological Conditions and Root Parameters," Sustainability, MDPI, vol. 15(9), pages 1-14, April.
- Manzone, Marco & Calvo, Angela, 2016. "Energy and CO2 analysis of poplar and maize crops for biomass production in north Italy," Renewable Energy, Elsevier, vol. 86(C), pages 675-681.
- Wang, Donglin & Feng, Hao & Li, Yi & Zhang, Tibin & Dyck, Miles & Wu, Feng, 2019. "Energy input-output, water use efficiency and economics of winter wheat under gravel mulching in Northwest China," Agricultural Water Management, Elsevier, vol. 222(C), pages 354-366.
- Van linden, Veerle & Herman, Lieve, 2014. "A fuel consumption model for off-road use of mobile machinery in agriculture," Energy, Elsevier, vol. 77(C), pages 880-889.
- Özgöz, Engin & Altuntaş, Ebubekir & Asiltürk, Murat, 2017. "Effects of soil tillage on energy use in potato farming in Central Anatolia of Turkey," Energy, Elsevier, vol. 141(C), pages 1517-1523.
- Baruah, Debendra C. & Bora, Ganesh C., 2008. "Energy demand forecast for mechanized agriculture in rural India," Energy Policy, Elsevier, vol. 36(7), pages 2628-2636, July.
- Bakhshandeh, Esmaeil & Jamali, Mohsen & Emadi, Mostafa & Francaviglia, Rosa, 2022. "Greenhouse gas emissions and financial analysis of rice paddy production scenarios in northern Iran," Agricultural Water Management, Elsevier, vol. 272(C).
- Watmough, Gary R. & Atkinson, Peter M. & Saikia, Arupjyoti & Hutton, Craig W., 2016. "Understanding the Evidence Base for Poverty–Environment Relationships using Remotely Sensed Satellite Data: An Example from Assam, India," World Development, Elsevier, vol. 78(C), pages 188-203.
More about this item
Keywords
field performance; energy use; greenhouse gas emissions; tillage operation; environmental impact;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:5:p:587-:d:1385217. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.