IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i9p7193-d1133091.html
   My bibliography  Save this article

Trend for Soil CO 2 Efflux in Grassland and Forest Land in Relation with Meteorological Conditions and Root Parameters

Author

Listed:
  • Mykola Kochiieru

    (Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Kedainiai District, 58344 Akademija, Lithuania)

  • Agnė Veršulienė

    (Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Kedainiai District, 58344 Akademija, Lithuania)

  • Virginijus Feiza

    (Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Kedainiai District, 58344 Akademija, Lithuania)

  • Dalia Feizienė

    (Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Kedainiai District, 58344 Akademija, Lithuania)

Abstract

The key process in understanding carbon dynamics under different ecosystems is quantifying soil CO 2 efflux. However, this process can change annually as it depends on environmental variables. The results of this paper present the effects of root network, soil temperature, and volumetric water content on soil CO 2 efflux, which were investigated on Retisol of two types of land uses in Western Lithuania in 2017–2019: forest and grassland. It was determined that the average soil CO 2 efflux in the grassland was 32% higher than in the forest land. The CO 2 efflux, average across land uses, tended to increase in the following order: 2017 < 2018 < 2019. Dry weather conditions with high temperatures during the vegetation period governed the soil CO 2 efflux increase by 14%. Soil temperature (up to 20 °C) and volumetric water content (up to 23–25%) had a positive effect on the soil CO 2 efflux increase on Retisol . We established that the root’s activity plays one of the main roles in the CO 2 production rate—in both land uses, the soil CO 2 efflux was influenced by the root length density and the root volume.

Suggested Citation

  • Mykola Kochiieru & Agnė Veršulienė & Virginijus Feiza & Dalia Feizienė, 2023. "Trend for Soil CO 2 Efflux in Grassland and Forest Land in Relation with Meteorological Conditions and Root Parameters," Sustainability, MDPI, vol. 15(9), pages 1-14, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7193-:d:1133091
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/9/7193/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/9/7193/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Richard D. Boone & Knute J. Nadelhoffer & Jana D. Canary & Jason P. Kaye, 1998. "Roots exert a strong influence on the temperature sensitivityof soil respiration," Nature, Nature, vol. 396(6711), pages 570-572, December.
    2. Šarauskis, Egidijus & Buragienė, Sidona & Masilionytė, Laura & Romaneckas, Kęstutis & Avižienytė, Dovile & Sakalauskas, Antanas, 2014. "Energy balance, costs and CO2 analysis of tillage technologies in maize cultivation," Energy, Elsevier, vol. 69(C), pages 227-235.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mykola Kochiieru & Agnė Veršulienė & Virginijus Feiza & Dalia Feizienė & Kateryna Shatkovska & Irena Deveikytė, 2024. "The Action of Environmental Factors on Carbon Dioxide Efflux per Growing Season and Non-Growing Season," Sustainability, MDPI, vol. 16(11), pages 1-13, May.
    2. Liudmila Tripolskaja & Monika Toleikiene & Aida Skersiene & Agne Versuliene, 2024. "Biomass of Shoots and Roots of Multicomponent Grasslands and Their Impact on Soil Carbon Accumulation in Arenosol Rich in Stones," Land, MDPI, vol. 13(7), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suha Elsoragaby & A. F. Kheiralla & Elkamil Tola & Azmi Yahya & Modather Mairghany & Mojahid Ahmed & Wael M. Elamin & Bahaaddein K. M. Mahgoub, 2024. "Energy Utilization and Greenhouse Gas (GHG) Emissions of Tillage Operation in Wetland Rice Cultivation," Land, MDPI, vol. 13(5), pages 1-13, April.
    2. Justinas Anušauskas & Andrius Grigas & Kristina Lekavičienė & Ernestas Zaleckas & Simona Paulikienė & Dainius Steponavičius, 2024. "Energy and Environmental Assessment of Bacteria-Inoculated Mineral Fertilizer Used in Spring Barley Cultivation Technologies," Agriculture, MDPI, vol. 14(4), pages 1-22, April.
    3. Xiangwen Wu & Shuying Zang & Dalong Ma & Jianhua Ren & Qiang Chen & Xingfeng Dong, 2019. "Emissions of CO 2 , CH 4 , and N 2 O Fluxes from Forest Soil in Permafrost Region of Daxing’an Mountains, Northeast China," IJERPH, MDPI, vol. 16(16), pages 1-14, August.
    4. Manzone, Marco & Calvo, Angela, 2016. "Energy and CO2 analysis of poplar and maize crops for biomass production in north Italy," Renewable Energy, Elsevier, vol. 86(C), pages 675-681.
    5. Van linden, Veerle & Herman, Lieve, 2014. "A fuel consumption model for off-road use of mobile machinery in agriculture," Energy, Elsevier, vol. 77(C), pages 880-889.
    6. Stanisław Bielski & Renata Marks-Bielska & Paweł Wiśniewski, 2022. "Investigation of Energy and Economic Balance and GHG Emissions in the Production of Different Cultivars of Buckwheat ( Fagopyrum esculentum Moench): A Case Study in Northeastern Poland," Energies, MDPI, vol. 16(1), pages 1-24, December.
    7. Kazemi, Hossein & Kamkar, Behnam & Lakzaei, Somayeh & Badsar, Meysam & Shahbyki, Malihe, 2015. "Energy flow analysis for rice production in different geographical regions of Iran," Energy, Elsevier, vol. 84(C), pages 390-396.
    8. Barbara Breza-Boruta & Karol Kotwica & Justyna Bauza-Kaszewska, 2021. "Effect of Tillage System and Organic Matter Management Interactions on Soil Chemical Properties and Biological Activity in a Spring Wheat Short-Time Cultivation," Energies, MDPI, vol. 14(21), pages 1-18, November.
    9. Fan Fan & Bei Li & Weifeng Zhang & John R. Porter & Fusuo Zhang, 2021. "Evaluation of Sustainability of Irrigated Crops in Arid Regions, China," Sustainability, MDPI, vol. 13(1), pages 1-15, January.
    10. Šiaudinis, Gintaras & Jasinskas, Algirdas & Šarauskis, Egidijus & Steponavičius, Dainius & Karčauskienė, Danutė & Liaudanskienė, Inga, 2015. "The assessment of Virginia mallow (Sida hermaphrodita Rusby) and cup plant (Silphium perfoliatum L.) productivity, physico–mechanical properties and energy expenses," Energy, Elsevier, vol. 93(P1), pages 606-612.
    11. Bunyod Holmatov & Arjen Y. Hoekstra & Maarten S. Krol, 2022. "EU’s bioethanol potential from wheat straw and maize stover and the environmental footprint of residue-based bioethanol," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-18, January.
    12. Keshavarz-Afshar, Reza & Mohammed, Yesuf Assen & Chen, Chengci, 2015. "Energy balance and greenhouse gas emissions of dryland camelina as influenced by tillage and nitrogen," Energy, Elsevier, vol. 91(C), pages 1057-1063.
    13. Houshyar, Ehsan & Zareifard, Hamid Reza & Grundmann, Philipp & Smith, Pete, 2015. "Determining efficiency of energy input for silage corn production: An econometric approach," Energy, Elsevier, vol. 93(P2), pages 2166-2174.
    14. Wang, Chong & Zhao, Jiongchao & Feng, Yupeng & Shang, Mengfei & Bo, Xiaozhi & Gao, Zhenzhen & Chen, Fu & Chu, Qingquan, 2021. "Optimizing tillage method and irrigation schedule for greenhouse gas mitigation, yield improvement, and water conservation in wheat–maize cropping systems," Agricultural Water Management, Elsevier, vol. 248(C).
    15. Jadwiga Wyszkowska & Edyta Boros-Lajszner & Jan Kucharski, 2024. "The Impact of Soil Contamination with Lead on the Biomass of Maize Intended for Energy Purposes, and the Biochemical and Physicochemical Properties of the Soil," Energies, MDPI, vol. 17(5), pages 1-18, February.
    16. Sergio Juárez-Hernández & Claudia Sheinbaum Pardo, 2020. "Assessing the potential of alternative farming practices for sustainable energy and water use and GHG mitigation in conventional maize systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 8029-8059, December.
    17. Paris, Bas & Vandorou, Foteini & Balafoutis, Athanasios T. & Vaiopoulos, Konstantinos & Kyriakarakos, George & Manolakos, Dimitris & Papadakis, George, 2022. "Energy use in open-field agriculture in the EU: A critical review recommending energy efficiency measures and renewable energy sources adoption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    18. Yan, Jie & Kong, Zhaoyang & Liu, Yize & Li, Ning & Yang, Xiaolin & Zhuang, Minghao, 2023. "A high-resolution energy use efficiency assessment of China’s staple food crop production and associated improvement potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    19. Daniel Hoehn & María Margallo & Jara Laso & Ana Fernández-Ríos & Israel Ruiz-Salmón & Rubén Aldaco, 2022. "Energy Systems in the Food Supply Chain and in the Food Loss and Waste Valorization Processes: A Systematic Review," Energies, MDPI, vol. 15(6), pages 1-15, March.
    20. Šarauskis, Egidijus & Masilionytė, Laura & Juknevičius, Darius & Buragienė, Sidona & Kriaučiūnienė, Zita, 2019. "Energy use efficiency, GHG emissions, and cost-effectiveness of organic and sustainable fertilisation," Energy, Elsevier, vol. 172(C), pages 1151-1160.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7193-:d:1133091. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.