IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i4p543-d1378478.html
   My bibliography  Save this article

Trends, Drivers, and Land Use Strategies for Facility Agricultural Land during the Agricultural Modernization Process: Evidence from Huzhou City, China

Author

Listed:
  • Yun Chen

    (Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China)

  • Zhifeng Wang

    (Natural Resources Collection Center in Zhejiang Province, Department of Natural Resources of Zhejiang Province, Hangzhou 310007, China)

  • Kaijiang You

    (Natural Resources Collection Center in Zhejiang Province, Department of Natural Resources of Zhejiang Province, Hangzhou 310007, China)

  • Congmou Zhu

    (School of Public Affairs, Zhejiang Gongshang University, Hangzhou 310018, China)

  • Ke Wang

    (Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China)

  • Muye Gan

    (Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China)

  • Jing Zhang

    (Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China)

Abstract

Facility agriculture is an important initiative to adopt an all-encompassing approach to food and build a diversified food supply system. Understanding the evolution of facility agricultural land and the factors that drive it can contribute to the development of scientifically strategic agricultural planning and agricultural modernization. Therefore, this paper constructs a “situation-structure-behavior-value” theoretical framework; quantifies the relevant driving factors (physical, proximal, and socioeconomic) and their impacts on the development and layout of facility agriculture land by using a multivariate logistic regression model; and provides a strategy for optimizing land use. The results showed that the area of facility agriculture in Huzhou is rapidly expanding. Regarding drivers, facility agricultural land tends to be located in areas with higher slopes according to plot selection. Facility agriculture is more likely to develop in plots with convenient transportation and closer proximity to markets. At the economic level, economic efficiency, agricultural resource superiority, and policies significantly impact facility agriculture expansion. Finally, we propose three land use policy options to facilitate the sustainable development of facility agriculture. This study elucidates the underlying factors driving different types of facility agricultural land and offers methodological guidance for policy support, planning, control, and optimization strategies for facility agriculture.

Suggested Citation

  • Yun Chen & Zhifeng Wang & Kaijiang You & Congmou Zhu & Ke Wang & Muye Gan & Jing Zhang, 2024. "Trends, Drivers, and Land Use Strategies for Facility Agricultural Land during the Agricultural Modernization Process: Evidence from Huzhou City, China," Land, MDPI, vol. 13(4), pages 1-21, April.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:4:p:543-:d:1378478
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/4/543/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/4/543/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Orgaz, F. & Fernandez, M.D. & Bonachela, S. & Gallardo, M. & Fereres, E., 2005. "Evapotranspiration of horticultural crops in an unheated plastic greenhouse," Agricultural Water Management, Elsevier, vol. 72(2), pages 81-96, March.
    2. Shenggen Fan & Connie Chan‐Kang, 2005. "Is small beautiful? Farm size, productivity, and poverty in Asian agriculture," Agricultural Economics, International Association of Agricultural Economists, vol. 32(s1), pages 135-146, January.
    3. Powlson, D.S. & Gregory, P.J. & Whalley, W.R. & Quinton, J.N. & Hopkins, D.W. & Whitmore, A.P. & Hirsch, P.R. & Goulding, K.W.T., 2011. "Soil management in relation to sustainable agriculture and ecosystem services," Food Policy, Elsevier, vol. 36(Supplemen), pages 72-87, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oda, M. & Umetsu, C. & Shen, J., 2018. "The impacts of regional differences on farmland consolidation in Japan: The case of Tohoku, Hokuriku and Kinki," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277389, International Association of Agricultural Economists.
    2. Smith, Helen F. & Sullivan, Caroline A., 2014. "Ecosystem services within agricultural landscapes—Farmers' perceptions," Ecological Economics, Elsevier, vol. 98(C), pages 72-80.
    3. Jia, Lili, 2012. "Land fragmentation and off-farm labor supply in China," Studies on the Agricultural and Food Sector in Transition Economies, Leibniz Institute of Agricultural Development in Transition Economies (IAMO), volume 66, number 66.
    4. Wuliyasu Bai & Liang Yan & Jingbo Liang & Long Zhang, 2022. "Mapping Knowledge Domain on Economic Growth and Water Sustainability: A Scientometric Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4137-4159, September.
    5. Bohua Yu & Wei Song & Yanqing Lang, 2017. "Spatial Patterns and Driving Forces of Greenhouse Land Change in Shouguang City, China," Sustainability, MDPI, vol. 9(3), pages 1-15, March.
    6. Rodríguez-Ortega, T. & Olaizola, A.M. & Bernués, A., 2018. "A novel management-based system of payments for ecosystem services for targeted agri-environmental policy," Ecosystem Services, Elsevier, vol. 34(PA), pages 74-84.
    7. Unknown, 2015. "Towards A Sustainable Soil Fertility Strategy in Ghana," Miscellaneous Publications 212898, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    8. Hurley, Mason, 2016. "Re-examining Changes in Farm Size Distributions Worldwide Using a Modified Generalized Method of Moments Approach," Master's Theses and Plan B Papers 249287, University of Minnesota, Department of Applied Economics.
    9. Cai, Wenbiao, 2010. "Skill Investment, Farm Size Distribution and Agricultural Productivity," MPRA Paper 26439, University Library of Munich, Germany.
    10. repec:idb:brikps:64718 is not listed on IDEAS
    11. Cao, Yueming & Bai, Yunli & Zhang, Linxiu, 2021. "Plot Size, Adjacency, and Farmland Rental Contract Choice," 2021 Conference, August 17-31, 2021, Virtual 315378, International Association of Agricultural Economists.
    12. L. Toma & A. P. Barnes & L.-A. Sutherland & S. Thomson & F. Burnett & K. Mathews, 2018. "Impact of information transfer on farmers’ uptake of innovative crop technologies: a structural equation model applied to survey data," The Journal of Technology Transfer, Springer, vol. 43(4), pages 864-881, August.
    13. Fang He & Linlin Shi & Jingcheng Tian & Lijuan Mei, 2021. "Effects of long-term fertilisation on soil organic carbon sequestration after a 34-year rice-wheat rotation in Taihu Lake Basin," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 67(1), pages 1-7.
    14. Thapa, Sridhar, 2007. "The relationship between farm size and productivity: empirical evidence from the Nepalese mid-hills," 106th Seminar, October 25-27, 2007, Montpellier, France 7940, European Association of Agricultural Economists.
    15. Ashok K. Mishra & Anjani Kumar & Pramod K. Joshi & Alwin D'Souza, 2018. "Cooperatives, contract farming, and farm size: The case of tomato producers in Nepal," Agribusiness, John Wiley & Sons, Ltd., vol. 34(4), pages 865-886, October.
    16. Martina Novotná & Tomáš Volek, 2016. "The Significance of Farm Size in the Evaluation of Labour Productivity in Agriculture," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 64(1), pages 333-340.
    17. Xiaoheng Zhang & Xiaohua Yu & Xu Tian & Xianhui Geng & Yingheng Zhou, 2019. "Farm size, inefficiency, and rice production cost in China," Journal of Productivity Analysis, Springer, vol. 52(1), pages 57-68, December.
    18. Maisa’a W. Shammout & Tala Qtaishat & Hala Rawabdeh & Muhammad Shatanawi, 2018. "Improving Water Use Efficiency under Deficit Irrigation in the Jordan Valley," Sustainability, MDPI, vol. 10(11), pages 1-12, November.
    19. Singh, R.K.P. & Kumar, Abhay & Singh, K.M. & Kumar, Anjani, 2014. "Agricultural Production performance on Small farm holdings: Some Empirical Evidences from Bihar, India," MPRA Paper 59680, University Library of Munich, Germany, revised 15 Oct 2014.
    20. Gallardo, M. & Giménez, C. & Martínez-Gaitán, C. & Stöckle, C.O. & Thompson, R.B. & Granados, M.R., 2011. "Evaluation of the VegSyst model with muskmelon to simulate crop growth, nitrogen uptake and evapotranspiration," Agricultural Water Management, Elsevier, vol. 101(1), pages 107-117.
    21. Muyanga, Milu & Jayne, T.S., 2014. "Effects of rising rural population density on smallholder agriculture in Kenya," Food Policy, Elsevier, vol. 48(C), pages 98-113.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:4:p:543-:d:1378478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.