IDEAS home Printed from https://ideas.repec.org/a/eee/jfpoli/v36y2011isupplement1ps72-s87.html
   My bibliography  Save this article

Soil management in relation to sustainable agriculture and ecosystem services

Author

Listed:
  • Powlson, D.S.
  • Gregory, P.J.
  • Whalley, W.R.
  • Quinton, J.N.
  • Hopkins, D.W.
  • Whitmore, A.P.
  • Hirsch, P.R.
  • Goulding, K.W.T.

Abstract

Requirements for research, practices and policies affecting soil management in relation to global food security are reviewed. Managing soil organic carbon (C) is central because soil organic matter influences numerous soil properties relevant to ecosystem functioning and crop growth. Even small changes in total C content can have disproportionately large impacts on key soil physical properties. Practices to encourage maintenance of soil C are important for ensuring sustainability of all soil functions. Soil is a major store of C within the biosphere - increases or decreases in this large stock can either mitigate or worsen climate change. Deforestation, conversion of grasslands to arable cropping and drainage of wetlands all cause emission of C; policies and international action to minimise these changes are urgently required. Sequestration of C in soil can contribute to climate change mitigation but the real impact of different options is often misunderstood. Some changes in management that are beneficial for soil C, increase emissions of nitrous oxide (a powerful greenhouse gas) thus cancelling the benefit. Research on soil physical processes and their interactions with roots can lead to improved and novel practices to improve crop access to water and nutrients. Increased understanding of root function has implications for selection and breeding of crops to maximise capture of water and nutrients. Roots are also a means of delivering natural plant-produced chemicals into soil with potentially beneficial impacts. These include biocontrol of soil-borne pests and diseases and inhibition of the nitrification process in soil (conversion of ammonium to nitrate) with possible benefits for improved nitrogen use efficiency and decreased nitrous oxide emission. The application of molecular methods to studies of soil organisms, and their interactions with roots, is providing new understanding of soil ecology and the basis for novel practical applications. Policy makers and those concerned with development of management approaches need to keep a watching brief on emerging possibilities from this fast-moving area of science. Nutrient management is a key challenge for global food production: there is an urgent need to increase nutrient availability to crops grown by smallholder farmers in developing countries. Many changes in practices including inter-cropping, inclusion of nitrogen-fixing crops, agroforestry and improved recycling have been clearly demonstrated to be beneficial: facilitating policies and practical strategies are needed to make these widely available, taking account of local economic and social conditions. In the longer term fertilizers will be essential for food security: policies and actions are needed to make these available and affordable to small farmers. In developed regions, and those developing rapidly such as China, strategies and policies to manage more precisely the necessarily large flows of nutrients in ways that minimise environmental damage are essential. A specific issue is to minimise emissions of nitrous oxide whilst ensuring sufficient nitrogen is available for adequate food production. Application of known strategies (through either regulation or education), technological developments, and continued research to improve understanding of basic processes will all play a part. Decreasing soil erosion is essential, both to maintain the soil resource and to minimise downstream damage such as sedimentation of rivers with adverse impacts on fisheries. Practical strategies are well known but often have financial implications for farmers. Examples of systems for paying one group of land users for ecosystem services affecting others exist in several parts of the world and serve as a model.

Suggested Citation

  • Powlson, D.S. & Gregory, P.J. & Whalley, W.R. & Quinton, J.N. & Hopkins, D.W. & Whitmore, A.P. & Hirsch, P.R. & Goulding, K.W.T., 2011. "Soil management in relation to sustainable agriculture and ecosystem services," Food Policy, Elsevier, vol. 36(Supplemen), pages 72-87, January.
  • Handle: RePEc:eee:jfpoli:v:36:y:2011:i:supplement1:p:s72-s87
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-9192(10)00139-9
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oecd, 2007. "Competition and Regulation in Agriculture," OECD Journal: Competition Law and Policy, OECD Publishing, vol. 9(2), pages 93-165.
    2. Aaditya Mattoo & Arvind Subramanian & Dominique van der Mensbrugghe & Jianwu He, 2009. "Reconciling Climate Change and Trade Policy," Working Papers 189, Center for Global Development.
    3. Martin, Philip L., 2007. "Immigration and Agriculture (PowerPoint)," Agricultural Outlook Forum 2007 8037, United States Department of Agriculture, Agricultural Outlook Forum.
    4. Kym Anderson & Will Martin, 2009. "Distortions to Agricultural Incentives in Asia," World Bank Publications, The World Bank, number 2611.
    5. Golub, Alla & Henderson, Ben & Hertel, Thomas & Rose, Steven & Avetisyan, Misak & Sohngen, Brent, 2010. "Effects of the GHG Mitigation Policies on Livestock Sectors," GTAP Working Papers 3427, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    6. Huang, Jikun & Rozelle, Scott & Martin, William J. & Liu, Yu, 2007. "Distortions to Agricultural Incentives in China," Agricultural Distortions Working Paper 48478, World Bank.
    7. Oecd, 2008. "Partnership for Development: Agriculture in Africa," OECD Papers, OECD Publishing, vol. 7(12), pages 101-123.
    8. Reilly, J. & Paltsev, S. & Felzer, B. & Wang, X. & Kicklighter, D. & Melillo, J. & Prinn, R. & Sarofim, M. & Sokolov, A. & Wang, C., 2007. "Global economic effects of changes in crops, pasture, and forests due to changing climate, carbon dioxide, and ozone," Energy Policy, Elsevier, vol. 35(11), pages 5370-5383, November.
    9. Antle, John M., 2008. "Climate Change and Agriculture: Economic Impacts," Choices, Agricultural and Applied Economics Association, vol. 23(1).
    10. Kym Anderson, 2010. "Globalisation's Effects on World Agricultural Trade, 1960 to 2050," Centre for International Economic Studies Working Papers 2010-11, University of Adelaide, Centre for International Economic Studies.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hans-Peter Weikard, 2016. "Phosphorus recycling and food security in the long run: a conceptual modelling approach," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 8(2), pages 405-414, April.
    2. Heywood, Peter Frank & Turpin, Simon, 2013. "Variations in Soil Carbon Stocks with Texture and Previous Landuse in North-western NSW, Australia," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 2(2).
    3. repec:eee:agisys:v:157:y:2017:i:c:p:292-302 is not listed on IDEAS
    4. Traub, Lulama & Yeboah, Felix & Meyer, Ferdinand & Jayne, Thomas S., 2015. "Megatrends and the Future of African Economies," 2015 Conference, August 9-14, 2015, Milan, Italy 212525, International Association of Agricultural Economists.
    5. Smith, Helen F. & Sullivan, Caroline A., 2014. "Ecosystem services within agricultural landscapes—Farmers' perceptions," Ecological Economics, Elsevier, vol. 98(C), pages 72-80.
    6. Muyanga, Milu & Jayne, T.S., 2014. "Effects of rising rural population density on smallholder agriculture in Kenya," Food Policy, Elsevier, vol. 48(C), pages 98-113.
    7. Jayne, T.S. & Mason, Nicole M. & Burke, William J. & Ariga, Joshua, 2016. "Agricultural Input Subsidy Programs in Africa: An Assessment of Recent Evidence," Food Security International Development Working Papers 245892, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    8. Ferrarini, Andrea & Serra, Paolo & Almagro, María & Trevisan, Marco & Amaducci, Stefano, 2017. "Multiple ecosystem services provision and biomass logistics management in bioenergy buffers: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 277-290.
    9. Wassenaar, T. & Doelsch, E. & Feder, F. & Guerrin, F. & Paillat, J.-M. & Thuriès, L. & Saint Macary, H., 2014. "Returning Organic Residues to Agricultural Land (RORAL) – Fuelling the Follow-the-Technology approach," Agricultural Systems, Elsevier, vol. 124(C), pages 60-69.
    10. Chamberlin, Jordan & Jayne, T.S. & Headey, D., 2014. "Scarcity amidst abundance? Reassessing the potential for cropland expansion in Africa," Food Policy, Elsevier, vol. 48(C), pages 51-65.
    11. repec:eee:agisys:v:154:y:2017:i:c:p:53-62 is not listed on IDEAS
    12. Mariana Regina Durigan & Maurício Roberto Cherubin & Plínio Barbosa de Camargo & Joice Nunes Ferreira & Erika Berenguer & Toby Alan Gardner & Jos Barlow & Carlos Tadeu dos Santos Dias & Diana Signor &, 2017. "Soil Organic Matter Responses to Anthropogenic Forest Disturbance and Land Use Change in the Eastern Brazilian Amazon," Sustainability, MDPI, Open Access Journal, vol. 9(3), pages 1-16, March.
    13. Jürges, Nataly, 2016. "Wahrnehmungen und Funktionen in der Transformation zur Bioökonomie: Eine Akteursanalyse im Politikfeld "Boden"," UFZ Discussion Papers 6/2016, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    14. Ana B. Wingeyer & Telmo J. C. Amado & Mario Pérez-Bidegain & Guillermo A. Studdert & Carlos H. Perdomo Varela & Fernando O. Garcia & Douglas L. Karlen, 2015. "Soil Quality Impacts of Current South American Agricultural Practices," Sustainability, MDPI, Open Access Journal, vol. 7(2), pages 1-30, February.
    15. Anonymous, 2015. "Towards A Sustainable Soil Fertility Strategy in Ghana," Miscellaneous Publications 212898, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    16. Okeyo, A.I. & Mucheru-Muna, M. & Mugwe, J. & Ngetich, K.F. & Mugendi, D.N. & Diels, J. & Shisanya, C.A., 2014. "Effects of selected soil and water conservation technologies on nutrient losses and maize yields in the central highlands of Kenya," Agricultural Water Management, Elsevier, vol. 137(C), pages 52-58.
    17. repec:eee:agisys:v:157:y:2017:i:c:p:258-268 is not listed on IDEAS
    18. Jayne, T.S. & Chamberlin, Jordan & Headey, Derek D., 2014. "Land pressures, the evolution of farming systems, and development strategies in Africa: A synthesis," Food Policy, Elsevier, vol. 48(C), pages 1-17.
    19. repec:idb:brikps:64718 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jfpoli:v:36:y:2011:i:supplement1:p:s72-s87. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/foodpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.