IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i4p465-d1370669.html
   My bibliography  Save this article

Using GAMs to Explore the Influence Factors and Their Interactions on Land Surface Temperature: A Case Study in Nanjing

Author

Listed:
  • Xinan Zhang

    (School of Geography, Nanjing Normal University, Nanjing 210044, China)

  • Fan Yang

    (School of Geography, Nanjing Normal University, Nanjing 210044, China)

  • Jun Zhang

    (School of Geography, Nanjing Normal University, Nanjing 210044, China)

  • Qiang Dai

    (School of Geography, Nanjing Normal University, Nanjing 210044, China)

Abstract

The identification of influencing factors (IFs) of land surface temperature (LST) is crucial for developing effective strategies to mitigate global warming and conducting other relevant studies. However, most previous studies ignored the potential impact of interactions between IFs, which might lead to biased conclusions. Generalized additivity models (GAMs) can provide more explanatory results compared to traditional machine learning models. Therefore, this study employs GAMs to investigate the impact of IFs and their interactions on LST, aiming to accurately detect significant factors that drive the changes in LST. The results of this case study conducted in Nanjing, China, showed that the GAMs incorporating the interactions between factors could improve the fitness of LST and enhance the explanatory power of the model. The autumn model exhibited the most significant improvement in performance, with an increase of 0.19 in adjusted- R 2 and a 17.9% increase in deviance explained. In the seasonal model without interaction, vegetation, impervious surface, water body, precipitation, sunshine hours, and relative humidity showed significant effects on LST. However, when considering the interaction, the previously observed significant influence of the water body in spring and impervious surface in summer on LST became insignificant. In addition, under the interaction of precipitation, relative humidity, and sunshine hours, as well as the cooling effect of NDVI, there was no statistically significant upward trend in the seasonal mean LST during 2000–2020. Our study suggests that taking into account the interactions between IFs can identify the driving factors that affect LST more accurately.

Suggested Citation

  • Xinan Zhang & Fan Yang & Jun Zhang & Qiang Dai, 2024. "Using GAMs to Explore the Influence Factors and Their Interactions on Land Surface Temperature: A Case Study in Nanjing," Land, MDPI, vol. 13(4), pages 1-18, April.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:4:p:465-:d:1370669
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/4/465/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/4/465/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Xiaoguang & Yang, Lu, 2019. "Temperature and industrial output: Firm-level evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 257-274.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Shaohui & Guo, Qinxin & Smyth, Russell & Yao, Yao, 2022. "Extreme temperatures and residential electricity consumption: Evidence from Chinese households," Energy Economics, Elsevier, vol. 107(C).
    2. Yan Chen & Xiaohong Chen & Hongshan Ai & Xiaoqing Tan, 2022. "Temperature and Migration Intention: Evidence from the Unified National Graduate Entrance Examination in China," IJERPH, MDPI, vol. 19(16), pages 1-23, August.
    3. Xiaoguang Chen & Madhu Khanna & Lu Yang, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 256-279, April.
    4. Jacopo Ponticelli & Qiping Xu & Stefan Zeume, 2023. "Temperature and Local Industry Concentration," Working Papers 23-51, Center for Economic Studies, U.S. Census Bureau.
    5. Chen, Xiaoguang & Cui, Xiaomeng & Gao, Jing, 2023. "Differentiated Agricultural Sensitivity and Adaptability to Rising Temperatures across Regions and Sectors in China," 2023 Annual Meeting, July 23-25, Washington D.C. 335522, Agricultural and Applied Economics Association.
    6. Cosaert, Sam & Nieto Castro, Adrian & Tatsiramos, Konstantinos, 2023. "Temperature and the Timing of Work," IZA Discussion Papers 16480, Institute of Labor Economics (IZA).
    7. Peillex, Jonathan & El Ouadghiri, Imane & Gomes, Mathieu & Jaballah, Jamil, 2021. "Extreme heat and stock market activity," Ecological Economics, Elsevier, vol. 179(C).
    8. Philippe Kabore & Nicholas Rivers, 2023. "Manufacturing output and extreme temperature: Evidence from Canada," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 56(1), pages 191-224, February.
    9. Arjan Trinks & Erik Hille, 2023. "Carbon costs and industrial firm performance: Evidence from international microdata," CPB Discussion Paper 445, CPB Netherlands Bureau for Economic Policy Analysis.
    10. Hai Li & Hui Liu, 2023. "Climate Change, Farm Irrigation Facilities, and Agriculture Total Factor Productivity: Evidence from China," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    11. Tang, Wenliang & Yang, Mian & Duan, Hongbo, 2023. "Temperature and corporate tax avoidance: Evidence from Chinese manufacturing firms," Energy Economics, Elsevier, vol. 117(C).
    12. Sam Cosaert & Adrián Nieto & Konstantinos Tatsiramos, 2023. "Temperature and Joint Time Use," CESifo Working Paper Series 10464, CESifo.
    13. Jaqueline Oliveira & Bruno Palialol & Paula Pereda, 2021. "Do temperature shocks affect non-agriculture wages in Brazil? Evidence from individual-level panel data," Working Papers, Department of Economics 2021_13, University of São Paulo (FEA-USP).
    14. He, Xin & Xu, Xinwei & Shen, Yu, 2023. "How climate change affects enterprise inventory management —— From the perspective of regional traffic," Journal of Business Research, Elsevier, vol. 162(C).
    15. Qi Wang & Geng Niu & Xu Gan & Qiaoling Cai, 2022. "Green returns to education: Does education affect pro-environmental attitudes and behaviors in China?," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-20, February.
    16. Dong, Yangzi & Wong, Wing-Keung & Muda, Iskandar & Cong, Phan The & Duong Hoang, Anh & Ghardallou, Wafa & Ha, Ngo Ngan, 2023. "Do natural resources utilization and economic development reduce greenhouse gas emissions through consuming renewable and Clean Technology? A case study of China towards sustainable development goals," Resources Policy, Elsevier, vol. 85(PB).
    17. Wang, He-tong & Qi, Shao-zhou & Li, Kai, 2023. "Impact of risk-taking on enterprise value under extreme temperature: From the perspectives of external and internal governance," Journal of Asian Economics, Elsevier, vol. 84(C).
    18. Elliott, Robert J.R. & Liu, Yi & Strobl, Eric & Tong, Meng, 2019. "Estimating the direct and indirect impact of typhoons on plant performance: Evidence from Chinese manufacturers," Journal of Environmental Economics and Management, Elsevier, vol. 98(C).
    19. Hai-Anh H. Dang & Minh Cong Nguyen & Trong-Anh Trinh, 2022. "Does Hotter Temperature Increase Poverty? Global Evidence from Subnational Data Analysis," Working Papers 622, ECINEQ, Society for the Study of Economic Inequality.
    20. Li, Chengzheng & Cong, Jiajia & Gu, Haiying & Zhang, Peng, 2021. "The non-linear effect of daily weather on economic performance: Evidence from China," China Economic Review, Elsevier, vol. 69(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:4:p:465-:d:1370669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.