IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i3p619-d1088322.html
   My bibliography  Save this article

Exploring Associations between the Built Environment and Cycling Behaviour around Urban Greenways from a Human-Scale Perspective

Author

Listed:
  • Yiwei Bai

    (Bartlett School of Planning, University College London, London WC1E 6BT, UK)

  • Yihang Bai

    (Shanghai Academy of Fine Arts, Shanghai University, Shanghai 200444, China)

  • Ruoyu Wang

    (Centre for Public Health, Queen’s University Belfast, Belfast BT7 1NN, UK)

  • Tianren Yang

    (Department of Urban Planning and Design, The University of Hong Kong, Hong Kong, China)

  • Xinyao Song

    (School of Architecture and Cities, University of Westminster, London W1B 2HW, UK)

  • Bo Bai

    (School of Fine Arts, Guangdong University of Foreign Studies, Guangzhou 510006, China)

Abstract

The incorporation of cycling as a mode of transport has been shown to have a positive impact on reducing traffic congestion, improving mental health outcomes, and contributing to the development of sustainable cities. The proliferation of bike-sharing systems, characterised by their wide availability and high usage rates, has made cycling in urban areas more accessible and convenient for individuals. While the existence of a relationship between cycling behaviour and the built environment has been established, few studies have specifically examined this connection for weekdays and weekends. With the emergence of new data sources, new methodologies have become available for research into this area. For instance, bike-sharing spatio-temporal datasets have made it possible to precisely measure cycling behaviour over time, while street-view images and deep learning techniques now enable researchers to quantify the built environment from a human perspective. In this study, we used 139,018 cycling trips and 14,947 street-view images to examine the connection between the built environment consisting of urban greenways and cycling behaviour. The results indicated that the greenness and enclosure of the level of greenway were positively correlated with increased cycling on both weekdays and weekends. However, the openness of the greenway appears to have opposing effects on cycling behaviour depending on the day of the week, with high levels of openness potentially promoting cycling on weekends but hindering it on weekdays. Based on the findings of this study, policymakers and planners should focus on the cycling environment and prioritise improving its comfort and safety to promote green transportation and bicycle-friendly cities.

Suggested Citation

  • Yiwei Bai & Yihang Bai & Ruoyu Wang & Tianren Yang & Xinyao Song & Bo Bai, 2023. "Exploring Associations between the Built Environment and Cycling Behaviour around Urban Greenways from a Human-Scale Perspective," Land, MDPI, vol. 12(3), pages 1-19, March.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:3:p:619-:d:1088322
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/3/619/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/3/619/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Böcker, Lars & Dijst, Martin & Faber, Jan, 2016. "Weather, transport mode choices and emotional travel experiences," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 360-373.
    2. Chao Xiao & Qian Shi & Chen-Jie Gu, 2021. "Assessing the Spatial Distribution Pattern of Street Greenery and Its Relationship with Socioeconomic Status and the Built Environment in Shanghai, China," Land, MDPI, vol. 10(8), pages 1-19, August.
    3. Chinh Ho & Corinne Mulley, 2013. "Tour-based mode choice of joint household travel patterns on weekend and weekday," Transportation, Springer, vol. 40(4), pages 789-811, July.
    4. Müller, Sven & Tscharaktschiew, Stefan & Haase, Knut, 2008. "Travel-to-school mode choice modelling and patterns of school choice in urban areas," Journal of Transport Geography, Elsevier, vol. 16(5), pages 342-357.
    5. Yang, Liya & Shen, Qing & Li, Zhibin, 2016. "Comparing travel mode and trip chain choices between holidays and weekdays," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 273-285.
    6. Yeran Sun & Yunyan Du & Yu Wang & Liyuan Zhuang, 2017. "Examining Associations of Environmental Characteristics with Recreational Cycling Behaviour by Street-Level Strava Data," IJERPH, MDPI, vol. 14(6), pages 1-12, June.
    7. Jiacheng Jiao & John Rollo & Baibai Fu & Chunlu Liu, 2021. "Exploring Effective Built Environment Factors for Evaluating Pedestrian Volume in High-Density Areas: A New Finding for the Central Business District in Melbourne, Australia," Land, MDPI, vol. 10(6), pages 1-17, June.
    8. Yu Ye & Wei Zeng & Qiaomu Shen & Xiaohu Zhang & Yi Lu, 2019. "The visual quality of streets: A human-centred continuous measurement based on machine learning algorithms and street view images," Environment and Planning B, , vol. 46(8), pages 1439-1457, October.
    9. Bin Xu & Qingxia Shi & Yaping Zhang, 2022. "Evaluation of the Health Promotion Capabilities of Greenway Trails: A Case Study in Hangzhou, China," Land, MDPI, vol. 11(4), pages 1-21, April.
    10. Tianren Yang, 2020. "Understanding commuting patterns and changes: Counterfactual analysis in a planning support framework," Environment and Planning B, , vol. 47(8), pages 1440-1455, October.
    11. Chris Jacobs-Crisioni & Piet Rietveld & Eric Koomen & Emmanouil Tranos, 2014. "Evaluating the Impact of Land-Use Density and Mix on Spatiotemporal Urban Activity Patterns: An Exploratory Study Using Mobile Phone Data," Environment and Planning A, , vol. 46(11), pages 2769-2785, November.
    12. Lanzendorf, Martin & Busch-Geertsema, Annika, 2014. "The cycling boom in large German cities—Empirical evidence for successful cycling campaigns," Transport Policy, Elsevier, vol. 36(C), pages 26-33.
    13. Giovanna Calogiuri & Lewis R. Elliott, 2017. "Why Do People Exercise in Natural Environments? Norwegian Adults’ Motives for Nature-, Gym-, and Sports-Based Exercise," IJERPH, MDPI, vol. 14(4), pages 1-15, April.
    14. Wafic El-Assi & Mohamed Salah Mahmoud & Khandker Nurul Habib, 2017. "Effects of built environment and weather on bike sharing demand: a station level analysis of commercial bike sharing in Toronto," Transportation, Springer, vol. 44(3), pages 589-613, May.
    15. Yencha, Christopher, 2019. "Valuing walkability: New evidence from computer vision methods," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 689-709.
    16. Ospina, Juan P. & Duque, Juan C. & Botero-Fernández, Verónica & Brussel, Mark, 2022. "Understanding the effect of sociodemographic, natural and built environment factors on cycling accessibility," Journal of Transport Geography, Elsevier, vol. 102(C).
    17. Wenxiu Chi & Guangsi Lin, 2019. "The Use of Community Greenways: A Case Study on A Linear Greenway Space in High Dense Residential Areas, Guangzhou," Land, MDPI, vol. 8(12), pages 1-19, December.
    18. Li, Shaoying & Zhuang, Caigang & Tan, Zhangzhi & Gao, Feng & Lai, Zhipeng & Wu, Zhifeng, 2021. "Inferring the trip purposes and uncovering spatio-temporal activity patterns from dockless shared bike dataset in Shenzhen, China," Journal of Transport Geography, Elsevier, vol. 91(C).
    19. Cheng, Long & Yang, Junjian & Chen, Xuewu & Cao, Mengqiu & Zhou, Hang & Sun, Yu, 2020. "How could the station-based bike sharing system and the free-floating bike sharing system be coordinated?," Journal of Transport Geography, Elsevier, vol. 89(C).
    20. Cheng, Long & Wang, Kailai & De Vos, Jonas & Huang, Jie & Witlox, Frank, 2022. "Exploring non-linear built environment effects on the integration of free-floating bike-share and urban rail transport: A quantile regression approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 175-187.
    21. Pucher, John & Buehler, Ralph & Seinen, Mark, 2011. "Bicycling renaissance in North America? An update and re-appraisal of cycling trends and policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 451-475, July.
    22. Bai, Yihang & Cao, Mengqiu & Wang, Ruoyu & Liu, Yuqi & Wang, Seunghyeon, 2022. "How street greenery facilitates active travel for university students," LSE Research Online Documents on Economics 115239, London School of Economics and Political Science, LSE Library.
    23. Zhou, Xingang & Yeh, Anthony G.O. & Yue, Yang, 2018. "Spatial variation of self-containment and jobs-housing balance in Shenzhen using cellphone big data," Journal of Transport Geography, Elsevier, vol. 68(C), pages 102-108.
    24. Ariane Middel & Jonas Lukasczyk & Ross Maciejewski, 2017. "Sky View Factors from Synthetic Fisheye Photos for Thermal Comfort Routing—A Case Study in Phoenix, Arizona," Urban Planning, Cogitatio Press, vol. 2(1), pages 19-30.
    25. Wu, Xueying & Lu, Yi & Gong, Yongxi & Kang, Yuhao & Yang, Linchuan & Gou, Zhonghua, 2021. "The impacts of the built environment on bicycle-metro transfer trips: A new method to delineate metro catchment area based on people's actual cycling space," Journal of Transport Geography, Elsevier, vol. 97(C).
    26. Li, Aoyong & Huang, Yizhe & Axhausen, Kay W., 2020. "An approach to imputing destination activities for inclusion in measures of bicycle accessibility," Journal of Transport Geography, Elsevier, vol. 82(C).
    27. Wang, Ruoyu & Cao, Mengqiu & Yao, Yao & Wu, Wenjie, 2022. "The inequalities of different dimensions of visible street urban green space provision: A machine learning approach," Land Use Policy, Elsevier, vol. 123(C).
    28. Rencai Dong & Yonglin Zhang & Jingzhu Zhao, 2018. "How Green Are the Streets Within the Sixth Ring Road of Beijing? An Analysis Based on Tencent Street View Pictures and the Green View Index," IJERPH, MDPI, vol. 15(7), pages 1-22, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shaoying & Zhuang, Caigang & Tan, Zhangzhi & Gao, Feng & Lai, Zhipeng & Wu, Zhifeng, 2021. "Inferring the trip purposes and uncovering spatio-temporal activity patterns from dockless shared bike dataset in Shenzhen, China," Journal of Transport Geography, Elsevier, vol. 91(C).
    2. Ross-Perez, Antonio & Walton, Neil & Pinto, Nuno, 2022. "Identifying trip purpose from a dockless bike-sharing system in Manchester," Journal of Transport Geography, Elsevier, vol. 99(C).
    3. Caigang, Zhuang & Shaoying, Li & Zhangzhi, Tan & Feng, Gao & Zhifeng, Wu, 2022. "Nonlinear and threshold effects of traffic condition and built environment on dockless bike sharing at street level," Journal of Transport Geography, Elsevier, vol. 102(C).
    4. Bohong Zheng & Rui Guo & Komi Bernard Bedra & Yanfen Xiang, 2022. "Quantitative Evaluation of Urban Style at Street Level: A Case Study of Hengyang County, China," Land, MDPI, vol. 11(4), pages 1-28, March.
    5. An, Ran & Zahnow, Renee & Pojani, Dorina & Corcoran, Jonathan, 2019. "Weather and cycling in New York: The case of Citibike," Journal of Transport Geography, Elsevier, vol. 77(C), pages 97-112.
    6. Chen, Enhui & Stathopoulos, Amanda & Nie, Yu (Marco), 2022. "Transfer station choice in a multimodal transit system: An empirical study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 337-355.
    7. Hong, Jinhyun & Philip McArthur, David & Stewart, Joanna L., 2020. "Can providing safe cycling infrastructure encourage people to cycle more when it rains? The use of crowdsourced cycling data (Strava)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 109-121.
    8. Gao, Jie & Kamphuis, Carlijn B.M. & Helbich, Marco & Ettema, Dick, 2020. "What is ‘neighborhood walkability’? How the built environment differently correlates with walking for different purposes and with walking on weekdays and weekends," Journal of Transport Geography, Elsevier, vol. 88(C).
    9. Yibang Zhang & Yukun Zou & Zhenjun Zhu & Xiucheng Guo & Xin Feng, 2022. "Evaluating Pedestrian Environment Using DeepLab Models Based on Street Walkability in Small and Medium-Sized Cities: Case Study in Gaoping, China," Sustainability, MDPI, vol. 14(22), pages 1-23, November.
    10. Cheng, Long & Huang, Jie & Jin, Tanhua & Chen, Wendong & Li, Aoyong & Witlox, Frank, 2023. "Comparison of station-based and free-floating bikeshare systems as feeder modes to the metro," Journal of Transport Geography, Elsevier, vol. 107(C).
    11. Elżbieta Macioszek & Paulina Świerk & Agata Kurek, 2020. "The Bike-Sharing System as an Element of Enhancing Sustainable Mobility—A Case Study based on a City in Poland," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    12. Lixun Liu & Yujiang Wang & Robin Hickman, 2023. "How Rail Transit Makes a Difference in People’s Multimodal Travel Behaviours: An Analysis with the XGBoost Method," Land, MDPI, vol. 12(3), pages 1-23, March.
    13. Ma, Xinwei & Zhang, Shuai & Wu, Tao & Yang, Yizhe & Yu, Jiajie, 2023. "Can dockless and docked bike-sharing substitute each other? Evidence from Nanjing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    14. Kumar Dey, Bibhas & Anowar, Sabreena & Eluru, Naveen, 2021. "A framework for estimating bikeshare origin destination flows using a multiple discrete continuous system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 119-133.
    15. Djihed Berkouk & Tallal Abdel Karim Bouzir & Luigi Maffei & Massimiliano Masullo, 2020. "Examining the Associations between Oases Soundscape Components and Walking Speed: Correlation or Causation?," Sustainability, MDPI, vol. 12(11), pages 1-16, June.
    16. Bean, Richard & Pojani, Dorina & Corcoran, Jonathan, 2021. "How does weather affect bikeshare use? A comparative analysis of forty cities across climate zones," Journal of Transport Geography, Elsevier, vol. 95(C).
    17. Liya Yang & Lingqian Hu & Zhenbo Wang, 2019. "The built environment and trip chaining behaviour revisited: The joint effects of the modifiable areal unit problem and tour purpose," Urban Studies, Urban Studies Journal Limited, vol. 56(4), pages 795-817, March.
    18. Pan Wu & Jinlong Li & Yuzhuang Pian & Xiaochen Li & Zilin Huang & Lunhui Xu & Guilin Li & Ruonan Li, 2022. "How Determinants Affect Transfer Ridership between Metro and Bus Systems: A Multivariate Generalized Poisson Regression Analysis Method," Sustainability, MDPI, vol. 14(15), pages 1-31, August.
    19. Li, Aoyong & Zhao, Pengxiang & Huang, Yizhe & Gao, Kun & Axhausen, Kay W., 2020. "An empirical analysis of dockless bike-sharing utilization and its explanatory factors: Case study from Shanghai, China," Journal of Transport Geography, Elsevier, vol. 88(C).
    20. Mohiuddin, Hossain & Fitch-Polse, Dillon T. & Handy, Susan L., 2023. "Does bike-share enhance transport equity? Evidence from the Sacramento, California region," Journal of Transport Geography, Elsevier, vol. 109(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:3:p:619-:d:1088322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.