IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v113y2023ics0966692323001886.html
   My bibliography  Save this article

An origin-destination level analysis on the competitiveness of bike-sharing to underground using explainable machine learning

Author

Listed:
  • Lv, Huitao
  • Li, Haojie
  • Chen, Yanlu
  • Feng, Tao

Abstract

Bike-sharing offers a convenient transportation option, enhancing the potential for direct competition with underground transportation, especially for short-distance trips. However, research on bike-sharing trips primarily focuses on survey data or aggregated data at the station-level. Few attempts have been made to understand the competition between bike-sharing and underground at the origin-destination (OD) level. This study aims to explore the competitiveness of bike-sharing to the underground at short-distance level using actual OD-level bike-sharing and underground ridership data collected in London. Light Gradient Boosting Machine and SHapley additive explanations models are employed for the analysis.

Suggested Citation

  • Lv, Huitao & Li, Haojie & Chen, Yanlu & Feng, Tao, 2023. "An origin-destination level analysis on the competitiveness of bike-sharing to underground using explainable machine learning," Journal of Transport Geography, Elsevier, vol. 113(C).
  • Handle: RePEc:eee:jotrge:v:113:y:2023:i:c:s0966692323001886
    DOI: 10.1016/j.jtrangeo.2023.103716
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692323001886
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2023.103716?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ji, Shujuan & Wang, Xin & Lyu, Tao & Liu, Xiaojie & Wang, Yuanqing & Heinen, Eva & Sun, Zhenwei, 2022. "Understanding cycling distance according to the prediction of the XGBoost and the interpretation of SHAP: A non-linear and interaction effect analysis," Journal of Transport Geography, Elsevier, vol. 103(C).
    2. Gu, Tianqi & Kim, Inhi & Currie, Graham, 2019. "Measuring immediate impacts of a new mass transit system on an existing bike-share system in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 20-39.
    3. Lu, Wei & Scott, Darren M. & Dalumpines, Ron, 2018. "Understanding bike share cyclist route choice using GPS data: Comparing dominant routes and shortest paths," Journal of Transport Geography, Elsevier, vol. 71(C), pages 172-181.
    4. Giuffrida, Nadia & Pilla, Francesco & Carroll, Páraic, 2023. "The social sustainability of cycling: Assessing equity in the accessibility of bike-sharing services," Journal of Transport Geography, Elsevier, vol. 106(C).
    5. Qiu, Waishan & Chang, Hector, 2021. "The interplay between dockless bikeshare and bus for small-size cities in the US: A case study of Ithaca," Journal of Transport Geography, Elsevier, vol. 96(C).
    6. Kim, Minjun & Cho, Gi-Hyoug, 2021. "Analysis on bike-share ridership for origin-destination pairs: Effects of public transit route characteristics and land-use patterns," Journal of Transport Geography, Elsevier, vol. 93(C).
    7. Broach, Joseph & Dill, Jennifer & Gliebe, John, 2012. "Where do cyclists ride? A route choice model developed with revealed preference GPS data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1730-1740.
    8. Campbell, Kayleigh B. & Brakewood, Candace, 2017. "Sharing riders: How bikesharing impacts bus ridership in New York City," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 264-282.
    9. Caigang, Zhuang & Shaoying, Li & Zhangzhi, Tan & Feng, Gao & Zhifeng, Wu, 2022. "Nonlinear and threshold effects of traffic condition and built environment on dockless bike sharing at street level," Journal of Transport Geography, Elsevier, vol. 102(C).
    10. Martin, Elliot PhD & Shaheen, Susan PhD, 2014. "Evaluating Public Transit Modal Shift Dynamics In Response to Bikesharing: A Tale of Two U.S. Cities," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6x29n876, Institute of Transportation Studies, UC Berkeley.
    11. Miamo Wendji, Clovis, 2015. "The Associated Solidarity Game of n-Person Transferable Utility Games: Linking the Solidarity Value to the Shapley Value," MPRA Paper 69054, University Library of Munich, Germany.
    12. Hu, Songhua & Chen, Mingyang & Jiang, Yuan & Sun, Wei & Xiong, Chenfeng, 2022. "Examining factors associated with bike-and-ride (BnR) activities around metro stations in large-scale dockless bikesharing systems," Journal of Transport Geography, Elsevier, vol. 98(C).
    13. Fishman, Elliot & Washington, Simon & Haworth, Narelle & Watson, Angela, 2015. "Factors influencing bike share membership: An analysis of Melbourne and Brisbane," Transportation Research Part A: Policy and Practice, Elsevier, vol. 71(C), pages 17-30.
    14. Faghih-Imani, Ahmadreza & Anowar, Sabreena & Miller, Eric J. & Eluru, Naveen, 2017. "Hail a cab or ride a bike? A travel time comparison of taxi and bicycle-sharing systems in New York City," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 11-21.
    15. Alan Murray, 2003. "A Coverage Model for Improving Public Transit System Accessibility and Expanding Access," Annals of Operations Research, Springer, vol. 123(1), pages 143-156, October.
    16. Wafic El-Assi & Mohamed Salah Mahmoud & Khandker Nurul Habib, 2017. "Effects of built environment and weather on bike sharing demand: a station level analysis of commercial bike sharing in Toronto," Transportation, Springer, vol. 44(3), pages 589-613, May.
    17. Ding, Chuan & Cao, Xinyu & Liu, Chao, 2019. "How does the station-area built environment influence Metrorail ridership? Using gradient boosting decision trees to identify non-linear thresholds," Journal of Transport Geography, Elsevier, vol. 77(C), pages 70-78.
    18. Haitao Jin & Fengjun Jin & Jiao’e Wang & Wei Sun & Libo Dong, 2019. "Competition and Cooperation between Shared Bicycles and Public Transit: A Case Study of Beijing," Sustainability, MDPI, vol. 11(5), pages 1-13, March.
    19. Carse, Andrew & Goodman, Anna & Mackett, Roger L. & Panter, Jenna & Ogilvie, David, 2013. "The factors influencing car use in a cycle-friendly city: the case of Cambridge," Journal of Transport Geography, Elsevier, vol. 28(C), pages 67-74.
    20. Goodman, Anna & Cheshire, James, 2014. "Inequalities in the London bicycle sharing system revisited: impacts of extending the scheme to poorer areas but then doubling prices," Journal of Transport Geography, Elsevier, vol. 41(C), pages 272-279.
    21. Du, Qiang & Zhou, Yuqing & Huang, Youdan & Wang, Yalei & Bai, Libiao, 2022. "Spatiotemporal exploration of the non-linear impacts of accessibility on metro ridership," Journal of Transport Geography, Elsevier, vol. 102(C).
    22. Liu, Jixiang & Wang, Bo & Xiao, Longzhu, 2021. "Non-linear associations between built environment and active travel for working and shopping: An extreme gradient boosting approach," Journal of Transport Geography, Elsevier, vol. 92(C).
    23. Cheng, Long & Wang, Kailai & De Vos, Jonas & Huang, Jie & Witlox, Frank, 2022. "Exploring non-linear built environment effects on the integration of free-floating bike-share and urban rail transport: A quantile regression approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 175-187.
    24. Tao, Tao & Wang, Jueyu & Cao, Xinyu, 2020. "Exploring the non-linear associations between spatial attributes and walking distance to transit," Journal of Transport Geography, Elsevier, vol. 82(C).
    25. Haywood, Luke & Koning, Martin & Prud'homme, Remy, 2018. "The economic cost of subway congestion: Estimates from Paris," Economics of Transportation, Elsevier, vol. 14(C), pages 1-8.
    26. Apara Banerjee & Mirosława Łukawska & Anders Fjendbo Jensen & Sonja Haustein, 2022. "Facilitating bicycle commuting beyond short distances: insights from existing literature," Transport Reviews, Taylor & Francis Journals, vol. 42(4), pages 526-550, July.
    27. Zhang, Ying & Thomas, Tom & Brussel, Mark & van Maarseveen, Martin, 2017. "Exploring the impact of built environment factors on the use of public bikes at bike stations: Case study in Zhongshan, China," Journal of Transport Geography, Elsevier, vol. 58(C), pages 59-70.
    28. Hu, Songhua & Xiong, Chenfeng & Chen, Peng & Schonfeld, Paul, 2023. "Examining nonlinearity in population inflow estimation using big data: An empirical comparison of explainable machine learning models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    29. Gustavo Romanillos & Borja Moya-Gómez & Martin Zaltz-Austwick & Patxi J. Lamíquiz-Daudén, 2018. "The pulse of the cycling city: visualising Madrid bike share system GPS routes and cycling flow," Journal of Maps, Taylor & Francis Journals, vol. 14(1), pages 34-43, January.
    30. Faghih-Imani, Ahmadreza & Eluru, Naveen & El-Geneidy, Ahmed M. & Rabbat, Michael & Haq, Usama, 2014. "How land-use and urban form impact bicycle flows: evidence from the bicycle-sharing system (BIXI) in Montreal," Journal of Transport Geography, Elsevier, vol. 41(C), pages 306-314.
    31. Hu, Songhua & Xiong, Chenfeng & Liu, Zhanqin & Zhang, Lei, 2021. "Examining spatiotemporal changing patterns of bike-sharing usage during COVID-19 pandemic," Journal of Transport Geography, Elsevier, vol. 91(C).
    32. Conrow, Lindsey & Murray, Alan T. & Fischer, Heather A., 2018. "An optimization approach for equitable bicycle share station siting," Journal of Transport Geography, Elsevier, vol. 69(C), pages 163-170.
    33. Elliot Fishman & Simon Washington & Narelle Haworth, 2013. "Bike Share: A Synthesis of the Literature," Transport Reviews, Taylor & Francis Journals, vol. 33(2), pages 148-165, March.
    34. Ralph Buehler & Jennifer Dill, 2016. "Bikeway Networks: A Review of Effects on Cycling," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 9-27, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chiou, Yu-Chiun & Wu, Kuo-Chi, 2024. "Bikesharing: The first- and last-mile service of public transportation? Evidence from an origin–destination perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 187(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Minjun & Cho, Gi-Hyoug, 2021. "Analysis on bike-share ridership for origin-destination pairs: Effects of public transit route characteristics and land-use patterns," Journal of Transport Geography, Elsevier, vol. 93(C).
    2. Chiou, Yu-Chiun & Wu, Kuo-Chi, 2024. "Bikesharing: The first- and last-mile service of public transportation? Evidence from an origin–destination perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 187(C).
    3. Zhan, Zilin & Guo, Yuanyuan & Noland, Robert B. & He, Sylvia Y. & Wang, Yacan, 2023. "Analysis of links between dockless bikeshare and metro trips in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    4. Dehdari Ebrahimi, Zhila & Momenitabar, Mohsen & Nasri, Arefeh A. & Mattson, Jeremy, 2022. "Using a GIS-based spatial approach to determine the optimal locations of bikeshare stations: The case of Washington D.C," Transport Policy, Elsevier, vol. 127(C), pages 48-60.
    5. Wang, Jueyu & Lindsey, Greg, 2019. "Do new bike share stations increase member use: A quasi-experimental study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 1-11.
    6. Todd, James & O'Brien, Oliver & Cheshire, James, 2021. "A global comparison of bicycle sharing systems," Journal of Transport Geography, Elsevier, vol. 94(C).
    7. Böcker, Lars & Anderson, Ellinor & Uteng, Tanu Priya & Throndsen, Torstein, 2020. "Bike sharing use in conjunction to public transport: Exploring spatiotemporal, age and gender dimensions in Oslo, Norway," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 389-401.
    8. Chung, Jaehoon & Yao, Enjian & Ko, Joonho & Namkung, Ok Stella, 2024. "Investigation of private and public bikes usage patterns considering GPS trajectory based cycling features," Journal of Transport Geography, Elsevier, vol. 118(C).
    9. Yi Yao & Yifang Zhang & Lixin Tian & Nianxing Zhou & Zhilin Li & Minggang Wang, 2019. "Analysis of Network Structure of Urban Bike-Sharing System: A Case Study Based on Real-Time Data of a Public Bicycle System," Sustainability, MDPI, vol. 11(19), pages 1-17, September.
    10. Lidong Zhu & Mujahid Ali & Elżbieta Macioszek & Mahdi Aghaabbasi & Amin Jan, 2022. "Approaching Sustainable Bike-Sharing Development: A Systematic Review of the Influence of Built Environment Features on Bike-Sharing Ridership," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    11. Cheng, Long & Huang, Jie & Jin, Tanhua & Chen, Wendong & Li, Aoyong & Witlox, Frank, 2023. "Comparison of station-based and free-floating bikeshare systems as feeder modes to the metro," Journal of Transport Geography, Elsevier, vol. 107(C).
    12. Qiu, Waishan & Chang, Hector, 2021. "The interplay between dockless bikeshare and bus for small-size cities in the US: A case study of Ithaca," Journal of Transport Geography, Elsevier, vol. 96(C).
    13. Mix, Richard & Hurtubia, Ricardo & Raveau, Sebastián, 2022. "Optimal location of bike-sharing stations: A built environment and accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 126-142.
    14. Cheng, Long & Wang, Kailai & De Vos, Jonas & Huang, Jie & Witlox, Frank, 2022. "Exploring non-linear built environment effects on the integration of free-floating bike-share and urban rail transport: A quantile regression approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 175-187.
    15. Ji, Shujuan & Wang, Xin & Lyu, Tao & Liu, Xiaojie & Wang, Yuanqing & Heinen, Eva & Sun, Zhenwei, 2022. "Understanding cycling distance according to the prediction of the XGBoost and the interpretation of SHAP: A non-linear and interaction effect analysis," Journal of Transport Geography, Elsevier, vol. 103(C).
    16. Kim, Kyoungok, 2023. "Investigation of modal integration of bike-sharing and public transit in Seoul for the holders of 365-day passes," Journal of Transport Geography, Elsevier, vol. 106(C).
    17. Wang, Jueyu & Lindsey, Greg, 2019. "Neighborhood socio-demographic characteristics and bike share member patterns of use," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    18. Yuanyuan Zhang & Yuming Zhang, 2018. "Associations between Public Transit Usage and Bikesharing Behaviors in The United States," Sustainability, MDPI, vol. 10(6), pages 1-20, June.
    19. Yi Zhu, 2022. "Can bicycle sharing mitigate vehicle emission in Chinese large cities? Estimation based on mode shift analysis," Transportation, Springer, vol. 49(6), pages 1627-1648, December.
    20. Bakó, Barna & Berezvai, Zombor & Isztin, Péter & Vigh, Enikő Zita, 2020. "Does Uber affect bicycle-sharing usage? Evidence from a natural experiment in Budapest," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 290-302.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:113:y:2023:i:c:s0966692323001886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.