IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i10p5795-d812824.html
   My bibliography  Save this article

Approaching Sustainable Bike-Sharing Development: A Systematic Review of the Influence of Built Environment Features on Bike-Sharing Ridership

Author

Listed:
  • Lidong Zhu

    (Chongqing Technology and Business Institute, School of Urban Construction Engineering, Chongqing 401520, China)

  • Mujahid Ali

    (Department of Civil and Environmental Engineering, Universiti Teknologi Petronas, Seri Iskandar 32610, Perak, Malaysia)

  • Elżbieta Macioszek

    (Department of Transport Systems, Traffic Engineering and Logistics, Faculty of Transport and Aviation Engineering, Silesian University of Technology, Krasińskiego 8 Street, 40-019 Katowice, Poland)

  • Mahdi Aghaabbasi

    (Centre for Sustainable Urban Planning and Real Estate (SUPRE), Department of Urban and Regional Planning, Faculty of Built Environment, University of Malaya, Kuala Lumpur 50603, Wilayah Persekutuan Kuala Lumpur, Malaysia)

  • Amin Jan

    (Faculty of Hospitality, Tourism and Wellness, Universiti Malaysia Kelantan, City Campus, Kota Bharu 16100, Kelantan, Malaysia)

Abstract

Bike-sharing is known as a sustainable form of transportation. This travel mode is able to tackle the “last mile” transit issue and deliver financial, well-being, and low-carbon lifestyle advantages to users. To date, many studies have analysed the influence of various factors, including built environments, on bike-sharing ridership. However, no study has exclusively synthesised these findings regarding the association between built-environment attributes and bike-sharing ridership. Thus, in this study, a systematic literature review was conducted on 39 eligible studies. These studies were assessed with respect to (1) bike-sharing usage, (2) studies’ geographical distribution, (3) data collection and analysis method, and (4) built environment factor type. Most studies were carried out in the US and Chinese cities. Variables associated with diversity, density, and distance to public transport stations and public transport infrastructure were frequently employed by the studies reviewed. It was found that BS stations with an average capacity of 24.63 docks and street network systems with an average length of 12.57 km of cycling lanes had a significant impact on the bike-sharing ridership. The findings of these studies were combined, and a series of recommendations were proposed based on them for bike-sharing service providers and researchers in academia. The findings of this evaluation can help practitioners and scholars understand the important built environment elements that influence bike-sharing ridership. Knowledge in this field will enable bike-sharing service providers to direct their resources sufficiently to enhance the more essential aspects of bike-sharing users’ satisfaction.

Suggested Citation

  • Lidong Zhu & Mujahid Ali & Elżbieta Macioszek & Mahdi Aghaabbasi & Amin Jan, 2022. "Approaching Sustainable Bike-Sharing Development: A Systematic Review of the Influence of Built Environment Features on Bike-Sharing Ridership," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:5795-:d:812824
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/10/5795/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/10/5795/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tao, Tao & Wang, Jueyu & Cao, Xinyu, 2020. "Exploring the non-linear associations between spatial attributes and walking distance to transit," Journal of Transport Geography, Elsevier, vol. 82(C).
    2. Ma, Xinwei & Ji, Yanjie & Yuan, Yufei & Van Oort, Niels & Jin, Yuchuan & Hoogendoorn, Serge, 2020. "A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 148-173.
    3. Böcker, Lars & Anderson, Ellinor & Uteng, Tanu Priya & Throndsen, Torstein, 2020. "Bike sharing use in conjunction to public transport: Exploring spatiotemporal, age and gender dimensions in Oslo, Norway," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 389-401.
    4. Nikolaos-Fivos Galatoulas & Konstantinos N. Genikomsakis & Christos S. Ioakimidis, 2020. "Spatio-Temporal Trends of E-Bike Sharing System Deployment: A Review in Europe, North America and Asia," Sustainability, MDPI, vol. 12(11), pages 1-17, June.
    5. Yanjie Ji & Xinwei Ma & Mingyuan Yang & Yuchuan Jin & Liangpeng Gao, 2018. "Exploring Spatially Varying Influences on Metro-Bikeshare Transfer: A Geographically Weighted Poisson Regression Approach," Sustainability, MDPI, vol. 10(5), pages 1-23, May.
    6. Böcker, Lars & Anderson, Ellinor, 2020. "Interest-adoption discrepancies, mechanisms of mediation and socio-spatial inclusiveness in bike-sharing: The case of nine urban regions in Norway," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 266-277.
    7. Ying Ni & Jiaqi Chen, 2020. "Exploring the Effects of the Built Environment on Two Transfer Modes for Metros: Dockless Bike Sharing and Taxis," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    8. Shaheen, Susan & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present, and Future," Institute of Transportation Studies, Working Paper Series qt79v822k5, Institute of Transportation Studies, UC Davis.
    9. Zhang, Ying & Thomas, Tom & Brussel, Mark & van Maarseveen, Martin, 2017. "Exploring the impact of built environment factors on the use of public bikes at bike stations: Case study in Zhongshan, China," Journal of Transport Geography, Elsevier, vol. 58(C), pages 59-70.
    10. Mooney, Stephen J. & Hosford, Kate & Howe, Bill & Yan, An & Winters, Meghan & Bassok, Alon & Hirsch, Jana A., 2019. "Freedom from the station: Spatial equity in access to dockless bike share," Journal of Transport Geography, Elsevier, vol. 74(C), pages 91-96.
    11. Chen, Zhiwei & Li, Xiaopeng, 2021. "Unobserved heterogeneity in transportation equity analysis: Evidence from a bike-sharing system in southern Tampa," Journal of Transport Geography, Elsevier, vol. 91(C).
    12. Kim, Kyoungok, 2018. "Investigation on the effects of weather and calendar events on bike-sharing according to the trip patterns of bike rentals of stations," Journal of Transport Geography, Elsevier, vol. 66(C), pages 309-320.
    13. Mateo-Babiano, Iderlina & Bean, Richard & Corcoran, Jonathan & Pojani, Dorina, 2016. "How does our natural and built environment affect the use of bicycle sharing?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 295-307.
    14. Noland, Robert B. & Smart, Michael J. & Guo, Ziye, 2016. "Bikeshare trip generation in New York City," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 164-181.
    15. Faghih-Imani, Ahmadreza & Eluru, Naveen & El-Geneidy, Ahmed M. & Rabbat, Michael & Haq, Usama, 2014. "How land-use and urban form impact bicycle flows: evidence from the bicycle-sharing system (BIXI) in Montreal," Journal of Transport Geography, Elsevier, vol. 41(C), pages 306-314.
    16. Shaheen, Susan A & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present and Future," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6qg8q6ft, Institute of Transportation Studies, UC Berkeley.
    17. Hu, Songhua & Xiong, Chenfeng & Liu, Zhanqin & Zhang, Lei, 2021. "Examining spatiotemporal changing patterns of bike-sharing usage during COVID-19 pandemic," Journal of Transport Geography, Elsevier, vol. 91(C).
    18. Wafic El-Assi & Mohamed Salah Mahmoud & Khandker Nurul Habib, 2017. "Effects of built environment and weather on bike sharing demand: a station level analysis of commercial bike sharing in Toronto," Transportation, Springer, vol. 44(3), pages 589-613, May.
    19. Guo, Yuanyuan & He, Sylvia Y., 2021. "The role of objective and perceived built environments in affecting dockless bike-sharing as a feeder mode choice of metro commuting," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 377-396.
    20. Zhao, Pengjun & Li, Shengxiao, 2017. "Bicycle-metro integration in a growing city: The determinants of cycling as a transfer mode in metro station areas in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 99(C), pages 46-60.
    21. Changxi Ma & Jibiao Zhou & Dong Yang & Yuanyuan Fan, 2020. "Research on the Relationship between the Individual Characteristics of Electric Bike Riders and Illegal Speeding Behavior: A Questionnaire-Based Study," Sustainability, MDPI, vol. 12(3), pages 1-12, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Irina Di Ruocco & Alessio D’Auria & Rosaria R. D’Alterio & Agostino De Rosa, 2023. "A Framework for a User-Perception-Based Approach to Integrate Landscape Protection in Soft Mobility Planning," Land, MDPI, vol. 12(5), pages 1-30, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhan, Zilin & Guo, Yuanyuan & Noland, Robert B. & He, Sylvia Y. & Wang, Yacan, 2023. "Analysis of links between dockless bikeshare and metro trips in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    2. Mix, Richard & Hurtubia, Ricardo & Raveau, Sebastián, 2022. "Optimal location of bike-sharing stations: A built environment and accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 126-142.
    3. Wang, Xudong & Cheng, Zhanhong & Trépanier, Martin & Sun, Lijun, 2021. "Modeling bike-sharing demand using a regression model with spatially varying coefficients," Journal of Transport Geography, Elsevier, vol. 93(C).
    4. Kim, Kyoungok, 2023. "Investigation of modal integration of bike-sharing and public transit in Seoul for the holders of 365-day passes," Journal of Transport Geography, Elsevier, vol. 106(C).
    5. Wang, Yacan & Li, Jingjing & Su, Duan & Zhou, Huiyu, 2023. "Spatial-temporal heterogeneity and built environment nonlinearity in inconsiderate parking of dockless bike-sharing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    6. Morton, Craig & Kelley, Scott & Monsuur, Fredrik & Hui, Tianwen, 2021. "A spatial analysis of demand patterns on a bicycle sharing scheme: Evidence from London," Journal of Transport Geography, Elsevier, vol. 94(C).
    7. Ma, Xinwei & Ji, Yanjie & Yuan, Yufei & Van Oort, Niels & Jin, Yuchuan & Hoogendoorn, Serge, 2020. "A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 148-173.
    8. Suzanne Maas & Paraskevas Nikolaou & Maria Attard & Loukas Dimitriou, 2021. "Heat, Hills and the High Season: A Model-Based Comparative Analysis of Spatio-Temporal Factors Affecting Shared Bicycle Use in Three Southern European Islands," Sustainability, MDPI, vol. 13(6), pages 1-21, March.
    9. Kim, Minjun & Cho, Gi-Hyoug, 2021. "Analysis on bike-share ridership for origin-destination pairs: Effects of public transit route characteristics and land-use patterns," Journal of Transport Geography, Elsevier, vol. 93(C).
    10. Dong, Xiaoyang & Zhang, Bin & Wang, Zhaohua, 2023. "Impact of land use on bike-sharing travel patterns: Evidence from large scale data analysis in China," Land Use Policy, Elsevier, vol. 133(C).
    11. Ji, Shujuan & Liu, Xiaojie & Wang, Yuanqing, 2024. "The role of road infrastructures in the usage of bikeshare and private bicycle," Transport Policy, Elsevier, vol. 149(C), pages 234-246.
    12. Ying Ni & Jiaqi Chen, 2020. "Exploring the Effects of the Built Environment on Two Transfer Modes for Metros: Dockless Bike Sharing and Taxis," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    13. Kyoungok Kim, 2024. "Discovering spatiotemporal usage patterns of a bike-sharing system by type of pass: a case study from Seoul," Transportation, Springer, vol. 51(4), pages 1373-1407, August.
    14. Liu, Yixiao & Tian, Zihao & Pan, Baoran & Zhang, Wenbin & Liu, Yunqi & Tian, Lixin, 2022. "A hybrid big-data-based and tolerance-based method to estimate environmental benefits of electric bike sharing," Applied Energy, Elsevier, vol. 315(C).
    15. Elżbieta Macioszek & Paulina Świerk & Agata Kurek, 2020. "The Bike-Sharing System as an Element of Enhancing Sustainable Mobility—A Case Study based on a City in Poland," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    16. Liu, Hung-Chi & Lin, Jen-Jia, 2019. "Associations of built environments with spatiotemporal patterns of public bicycle use," Journal of Transport Geography, Elsevier, vol. 74(C), pages 299-312.
    17. Hu, Songhua & Chen, Mingyang & Jiang, Yuan & Sun, Wei & Xiong, Chenfeng, 2022. "Examining factors associated with bike-and-ride (BnR) activities around metro stations in large-scale dockless bikesharing systems," Journal of Transport Geography, Elsevier, vol. 98(C).
    18. Lee, Carmen Kar Hang & Leung, Eric Ka Ho, 2023. "Spatiotemporal analysis of bike-share demand using DTW-based clustering and predictive analytics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    19. Shahram Heydari & Garyfallos Konstantinoudis & Abdul Wahid Behsoodi, 2021. "Effect of the COVID-19 pandemic on bike-sharing demand and hire time: Evidence from Santander Cycles in London," Papers 2107.11589, arXiv.org.
    20. Lv, Huitao & Li, Haojie & Chen, Yanlu & Feng, Tao, 2023. "An origin-destination level analysis on the competitiveness of bike-sharing to underground using explainable machine learning," Journal of Transport Geography, Elsevier, vol. 113(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:5795-:d:812824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.