IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v82y2020ics0966692319300717.html
   My bibliography  Save this article

An approach to imputing destination activities for inclusion in measures of bicycle accessibility

Author

Listed:
  • Li, Aoyong
  • Huang, Yizhe
  • Axhausen, Kay W.

Abstract

This paper proposes a new method to estimate bicycle accessibility for various trip purposes based on a massive dockless bike-sharing dataset in Shanghai, China. Specifically, a Dirichlet multinomial regression topic model (DMR model) is applied to identify bicycle trajectories' trip purposes, simultaneously considering arrival time and drop-off location. Based on obtained trip purposes, we estimate impedance functions using a negative exponential function. Finally, based on estimated impedance functions, two cases of bicycle accessibility for two different purposes - restaurant and hospital - are presented in Shanghais central area. The results show that almost 90% of bicycle trips are less than 30 min or 5 km. Although the difference between the impedance functions between various trip purposes is not significant, we find that trip purposes of “Work and School” have the highest travel impedance for bicyclists. Cyclists in Shanghai accept longer bicycle travel times for leisure (e.g., shopping) than for commuting (e.g., work or school).

Suggested Citation

  • Li, Aoyong & Huang, Yizhe & Axhausen, Kay W., 2020. "An approach to imputing destination activities for inclusion in measures of bicycle accessibility," Journal of Transport Geography, Elsevier, vol. 82(C).
  • Handle: RePEc:eee:jotrge:v:82:y:2020:i:c:s0966692319300717
    DOI: 10.1016/j.jtrangeo.2019.102566
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692319300717
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2019.102566?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Givoni, Moshe & Rietveld, Piet, 2007. "The access journey to the railway station and its role in passengers' satisfaction with rail travel," Transport Policy, Elsevier, vol. 14(5), pages 357-365, September.
    2. Wang, Yafei & Chen, Bi Yu & Yuan, Hui & Wang, Donggen & Lam, William H.K. & Li, Qingquan, 2018. "Measuring temporal variation of location-based accessibility using space-time utility perspective," Journal of Transport Geography, Elsevier, vol. 73(C), pages 13-24.
    3. Zuo, Ting & Wei, Heng & Rohne, Andrew, 2018. "Determining transit service coverage by non-motorized accessibility to transit: Case study of applying GPS data in Cincinnati metropolitan area," Journal of Transport Geography, Elsevier, vol. 67(C), pages 1-11.
    4. van Wee, Bert, 2016. "Accessible accessibility research challenges," Journal of Transport Geography, Elsevier, vol. 51(C), pages 9-16.
    5. Zhang, Yongping & Mi, Zhifu, 2018. "Environmental benefits of bike sharing: A big data-based analysis," Applied Energy, Elsevier, vol. 220(C), pages 296-301.
    6. Iacono, Michael & Krizek, Kevin J. & El-Geneidy, Ahmed, 2010. "Measuring non-motorized accessibility: issues, alternatives, and execution," Journal of Transport Geography, Elsevier, vol. 18(1), pages 133-140.
    7. Millward, Hugh & Spinney, Jamie & Scott, Darren, 2013. "Active-transport walking behavior: destinations, durations, distances," Journal of Transport Geography, Elsevier, vol. 28(C), pages 101-110.
    8. Eric J. Miller, 2018. "Accessibility: measurement and application in transportation planning," Transport Reviews, Taylor & Francis Journals, vol. 38(5), pages 551-555, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiwei Bai & Yihang Bai & Ruoyu Wang & Tianren Yang & Xinyao Song & Bo Bai, 2023. "Exploring Associations between the Built Environment and Cycling Behaviour around Urban Greenways from a Human-Scale Perspective," Land, MDPI, vol. 12(3), pages 1-19, March.
    2. Gao, Kun & Yang, Ying & Li, Aoyong & Li, Junhong & Yu, Bo, 2021. "Quantifying economic benefits from free-floating bike-sharing systems: A trip-level inference approach and city-scale analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 89-103.
    3. Ross-Perez, Antonio & Walton, Neil & Pinto, Nuno, 2022. "Identifying trip purpose from a dockless bike-sharing system in Manchester," Journal of Transport Geography, Elsevier, vol. 99(C).
    4. Agnieszka Jaszczak & Agnieszka Morawiak & Joanna Żukowska, 2020. "Cycling as a Sustainable Transport Alternative in Polish Cittaslow Towns," Sustainability, MDPI, vol. 12(12), pages 1-23, June.
    5. Li, Aoyong & Zhao, Pengxiang & Huang, Yizhe & Gao, Kun & Axhausen, Kay W., 2020. "An empirical analysis of dockless bike-sharing utilization and its explanatory factors: Case study from Shanghai, China," Journal of Transport Geography, Elsevier, vol. 88(C).
    6. Li, Shaoying & Zhuang, Caigang & Tan, Zhangzhi & Gao, Feng & Lai, Zhipeng & Wu, Zhifeng, 2021. "Inferring the trip purposes and uncovering spatio-temporal activity patterns from dockless shared bike dataset in Shenzhen, China," Journal of Transport Geography, Elsevier, vol. 91(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingzhu Song & Kaiping Wang & Yi Zhang & Meng Li & He Qi & Yi Zhang, 2020. "Impact Evaluation of Bike-Sharing on Bicycling Accessibility," Sustainability, MDPI, vol. 12(15), pages 1-16, July.
    2. Shi, Yuji & Blainey, Simon & Sun, Chao & Jing, Peng, 2020. "A literature review on accessibility using bibliometric analysis techniques," Journal of Transport Geography, Elsevier, vol. 87(C).
    3. Ryan, Jean & Pereira, Rafael H.M., 2021. "What are we missing when we measure accessibility? Comparing calculated and self-reported accounts among older people," Journal of Transport Geography, Elsevier, vol. 93(C).
    4. Hamidi, Zahra & Camporeale, Rosalia & Caggiani, Leonardo, 2019. "Inequalities in access to bike-and-ride opportunities: Findings for the city of Malmö," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 673-688.
    5. Jean Ryan, 2020. "Examining the Process of Modal Choice for Everyday Travel Among Older People," IJERPH, MDPI, vol. 17(3), pages 1-19, January.
    6. Helai Huang & Jialing Wu & Fang Liu & Yiwei Wang, 2020. "Measuring Accessibility Based on Improved Impedance and Attractive Functions Using Taxi Trajectory Data," Sustainability, MDPI, vol. 13(1), pages 1-23, December.
    7. Lissy La Paix & Karst Geurs, 2015. "Scenarios for measuring station-based impedances in a national transport model," ERSA conference papers ersa15p1310, European Regional Science Association.
    8. Ryan, Jean & Martens, Karel, 2023. "Defining and implementing a sufficient level of accessibility: What’s stopping us?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    9. Eizaguirre-Iribar, Arritokieta & Etxepare Igiñiz, Lauren & Hernández-Minguillón, Rufino Javier, 2016. "A multilevel approach of non-motorised accessibility in disused railway systems: The case-study of the Vasco-Navarro railway," Journal of Transport Geography, Elsevier, vol. 57(C), pages 35-43.
    10. Hamidi, Zahra, 2021. "Decomposing cycling potentials employing the motility framework," Journal of Transport Geography, Elsevier, vol. 91(C).
    11. Zhao, De & Ong, Ghim Ping, 2021. "Geo-fenced parking spaces identification for free-floating bicycle sharing system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 49-63.
    12. David Levinson & Hao Wu, 2020. "Towards a general theory of access," Working Papers 2022-01, University of Minnesota: Nexus Research Group.
    13. Arranz-López, Aldo & Soria-Lara, Julio A & López-Escolano, Carlos & Pueyo Campos, Ángel, 2017. "Retail Mobility Environments: A methodological framework for integrating retail activity and non-motorised accessibility in Zaragoza, Spain," Journal of Transport Geography, Elsevier, vol. 58(C), pages 92-103.
    14. Mingzhu Song & Yi Zhang & Meng Li & Yi Zhang, 2021. "Accessibility of Transit Stops with Multiple Feeder Modes: Walking and Private-Bike Cycling," Sustainability, MDPI, vol. 13(6), pages 1-27, March.
    15. H. M. Abdul Aziz & Nicholas N. Nagle & April M. Morton & Michael R. Hilliard & Devin A. White & Robert N. Stewart, 2018. "Exploring the impact of walk–bike infrastructure, safety perception, and built-environment on active transportation mode choice: a random parameter model using New York City commuter data," Transportation, Springer, vol. 45(5), pages 1207-1229, September.
    16. Alberto Dianin & Elisa Ravazzoli & Georg Hauger, 2021. "Implications of Autonomous Vehicles for Accessibility and Transport Equity: A Framework Based on Literature," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    17. Ryan, Jean & Pereira, Rafael H.M. & Andersson, Magnus, 2023. "Accessibility and space-time differences in when and how different groups (choose to) travel," Journal of Transport Geography, Elsevier, vol. 111(C).
    18. Elmira Jamei & Melissa Chan & Hing Wah Chau & Eric Gaisie & Katrin Lättman, 2022. "Perceived Accessibility and Key Influencing Factors in Transportation," Sustainability, MDPI, vol. 14(17), pages 1-22, August.
    19. Siying Zhu & Feng Zhu, 2020. "Multi-objective bike-way network design problem with space–time accessibility constraint," Transportation, Springer, vol. 47(5), pages 2479-2503, October.
    20. Ariza-Álvarez, Amor & Arranz-López, Aldo & Soria-Lara, Julio A., 2021. "Comparing walking accessibility variations between groceries and other retail activities for seniors," Research in Transportation Economics, Elsevier, vol. 87(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:82:y:2020:i:c:s0966692319300717. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.