IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i6p811-d827857.html
   My bibliography  Save this article

Aboveground Biomass Models in the Combretum-Terminalia Woodlands of Ethiopia: Testing Species and Site Variation Effects

Author

Listed:
  • Amsalu Abich

    (Wondo Genet College of Forestry and Natural Resources, Hawassa University, Shashemene P.O. Box 128, Ethiopia
    College of Agriculture and Environmental Sciences, University of Gondar, Gondar P.O. Box 196, Ethiopia)

  • Mesele Negash

    (Wondo Genet College of Forestry and Natural Resources, Hawassa University, Shashemene P.O. Box 128, Ethiopia)

  • Asmamaw Alemu

    (College of Agriculture and Environmental Sciences, University of Gondar, Gondar P.O. Box 196, Ethiopia)

  • Temesgen Gashaw

    (College of Agriculture and Environmental Sciences, Bahir Dar University, Bahir Dar P.O. Box 1289, Ethiopia)

Abstract

The Combretum-Terminalia woodlands and wooded grasslands (CTW) are widely distributed in East Africa. While these landscapes may have the potential to act as key global carbon sinks, relatively little is known about their carbon storage capacity. Here we developed a set of novel aboveground biomass (AGB) models and tested for species and site variation effects to quantify the potential for CTW to store carbon. In total, 321 trees were sampled from 13 dominant tree species, across three sites in the Northwest lowlands of Ethiopia. Overall, fitted species-specific models performed the best, with diameter at breast height explaining 94–99% of the AGB variations. Interspecific tree allometry differences among species were more substantial than intraspecific tree allometry among sites. Incorporating wood density and height in the mixed-species models significantly improved the model performance relative mean absolute error (MAPE) of 2.4–8.0%, while site variation did not affect the model accuracy substantially. Large errors (MAPE%) were observed when using existing pantropical models, indicating that model selection remains an important source of uncertainty. Although the estimates of selected site-specific models were accurate for local sites, mixed-species and species-specific models performed better when validation data collated from different sites were incorporated together. We concluded that including site- and species-level data improved model estimates of AGB for the CTW of Ethiopia.

Suggested Citation

  • Amsalu Abich & Mesele Negash & Asmamaw Alemu & Temesgen Gashaw, 2022. "Aboveground Biomass Models in the Combretum-Terminalia Woodlands of Ethiopia: Testing Species and Site Variation Effects," Land, MDPI, vol. 11(6), pages 1-23, May.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:6:p:811-:d:827857
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/6/811/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/6/811/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Geoffrey B. West & James H. Brown & Brian J. Enquist, 1999. "A general model for the structure and allometry of plant vascular systems," Nature, Nature, vol. 400(6745), pages 664-667, August.
    2. Brian J. Enquist & Karl J. Niklas, 2001. "Invariant scaling relations across tree-dominated communities," Nature, Nature, vol. 410(6829), pages 655-660, April.
    3. Chris Chatfield, 1995. "Model Uncertainty, Data Mining and Statistical Inference," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 158(3), pages 419-444, May.
    4. Tadesse Mucheye & Mekuanent Tebkew & Yohannis G/Mariam & Amsalu Abich, 2021. "Long-term dynamics of woodland vegetation with response of climate variability in the lowlands of north western part of Ethiopia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 123-132, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongying Li & Zhongwen Huang & Junyi Gai & Song Wu & Yanru Zeng & Qin Li & Rongling Wu, 2007. "A Conceptual Framework for Mapping Quantitative Trait Loci Regulating Ontogenetic Allometry," PLOS ONE, Public Library of Science, vol. 2(11), pages 1-10, November.
    2. Ma, Ping & Han, Xiao-Hui & Lin, Yue & Moore, John & Guo, Yao-Xin & Yue, Ming, 2019. "Exploring the relative importance of biotic and abiotic factors that alter the self-thinning rule: Insights from individual-based modelling and machine-learning," Ecological Modelling, Elsevier, vol. 397(C), pages 16-24.
    3. Chou, Ping & Chuang, Howard Hao-Chun & Chou, Yen-Chun & Liang, Ting-Peng, 2022. "Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning," European Journal of Operational Research, Elsevier, vol. 296(2), pages 635-651.
    4. repec:plo:pone00:0069625 is not listed on IDEAS
    5. Riccardo (Jack) Lucchetti & Luca Pedini, 2020. "ParMA: Parallelised Bayesian Model Averaging for Generalised Linear Models," Working Papers 2020:28, Department of Economics, University of Venice "Ca' Foscari".
    6. Robert Lehmann & Antje Weyh, 2016. "Forecasting Employment in Europe: Are Survey Results Helpful?," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(1), pages 81-117, September.
    7. Castle Jennifer L. & Doornik Jurgen A & Hendry David F., 2011. "Evaluating Automatic Model Selection," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-33, February.
    8. Lee, Yun Shin & Scholtes, Stefan, 2014. "Empirical prediction intervals revisited," International Journal of Forecasting, Elsevier, vol. 30(2), pages 217-234.
    9. Coleman, Stephen, 2005. "Testing Theories with Qualitative and Quantitative Predictions," MPRA Paper 105171, University Library of Munich, Germany.
    10. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    11. Brolly, Matthew & Woodhouse, Iain H., 2012. "A “Matchstick Model” of microwave backscatter from a forest," Ecological Modelling, Elsevier, vol. 237, pages 74-87.
    12. Eglin, Thomas & Francois, Christophe & Michelot, Alice & Delpierre, Nicolas & Damesin, Claire, 2010. "Linking intra-seasonal variations in climate and tree-ring δ13C: A functional modelling approach," Ecological Modelling, Elsevier, vol. 221(15), pages 1779-1797.
    13. Brooks, Jeremy S., 2010. "The Buddha mushroom: Conservation behavior and the development of institutions in Bhutan," Ecological Economics, Elsevier, vol. 69(4), pages 779-795, February.
    14. Kohei Koyama & Yoshiki Hidaka & Masayuki Ushio, 2012. "Dynamic Scaling in the Growth of a Non-Branching Plant, Cardiocrinum cordatum," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-5, September.
    15. Brian Knaeble & Seth Dutter, 2017. "Reversals of Least-Square Estimates and Model-Invariant Estimation for Directions of Unique Effects," The American Statistician, Taylor & Francis Journals, vol. 71(2), pages 97-105, April.
    16. Steven M. Shugan, 2002. "In Search of Data: An Editorial," Marketing Science, INFORMS, vol. 21(4), pages 369-377.
    17. Michael Schomaker & Christian Heumann, 2020. "When and when not to use optimal model averaging," Statistical Papers, Springer, vol. 61(5), pages 2221-2240, October.
    18. Clark, Todd & McCracken, Michael, 2013. "Advances in Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1107-1201, Elsevier.
    19. Taleb, Nassim Nicholas, 2009. "Errors, robustness, and the fourth quadrant," International Journal of Forecasting, Elsevier, vol. 25(4), pages 744-759, October.
    20. W. Robert Reed, 2009. "The Determinants Of U.S. State Economic Growth: A Less Extreme Bounds Analysis," Economic Inquiry, Western Economic Association International, vol. 47(4), pages 685-700, October.
    21. Nicholas Weller & Jeb Barnes, 2016. "Pathway Analysis and the Search for Causal Mechanisms," Sociological Methods & Research, , vol. 45(3), pages 424-457, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:6:p:811-:d:827857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.