IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i4p590-d796557.html
   My bibliography  Save this article

Accuracy Assessment of the Building Height Copernicus Data Layer: A Case Study of Bratislava, Slovakia

Author

Listed:
  • Daniel Szatmári

    (Institute of Geography, Slovak Academy of Sciences, Štefánikova 49, 814 73 Bratislava, Slovakia)

  • Monika Kopecká

    (Institute of Geography, Slovak Academy of Sciences, Štefánikova 49, 814 73 Bratislava, Slovakia)

  • Ján Feranec

    (Institute of Geography, Slovak Academy of Sciences, Štefánikova 49, 814 73 Bratislava, Slovakia)

Abstract

High buildings have generally changed the morphology of cities in recent decades, and they have a significant impact on multiple processes in the urban area. Building height is one of the criteria for urban land cover classification in local climate zone delineation and urban heat island modeling. The European Union’s Earth observation program Copernicus aims to achieve a global, continuous, autonomous, high-quality, wide-range Earth observation capacity. One of the most recent Urban Atlas layers is the Building Height 2012 (BH2012) layer released in 2018, which consists of a 10 m resolution raster layer containing height information generated for core urban areas of the capitals of the EEA38 countries and the United Kingdom. This contribution aims to present the accuracy validation of the BH2012 data in Bratislava using the Slovak Basic Database for the Geographic Information System (ZB GIS ). To compare the two datasets, four different tests were performed for the following group of landmark buildings: (i) with area > 100 m 2 , (ii) in Urban Atlas classes with soil sealing > 10%, (iii) with height > 50 m, (iv) with area > 1 ha. The results demonstrate the effect of the building’s area and compactness on the vertical accuracy of the BH2012 Copernicus data. The greater the building’s area and compactness, the smaller the difference between its height value in BH2012 and ZB GIS . The Urban Atlas class 11100 Continuous Urban Fabric (soil sealing: >80%) recorded the lowest vertical accuracy. The BH2012 database provides sufficiently accurate data for primary planning analyses of public administration bodies and various stakeholders who need to obtain information on the nature of a locality for development activities and small-scale environmental analyses. However, for detailed studies focusing on the quality of life in cities at the local level, more precise identification of the building height is recommended.

Suggested Citation

  • Daniel Szatmári & Monika Kopecká & Ján Feranec, 2022. "Accuracy Assessment of the Building Height Copernicus Data Layer: A Case Study of Bratislava, Slovakia," Land, MDPI, vol. 11(4), pages 1-14, April.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:4:p:590-:d:796557
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/4/590/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/4/590/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Borck, Rainald, 2016. "Will skyscrapers save the planet? Building height limits and urban greenhouse gas emissions," Regional Science and Urban Economics, Elsevier, vol. 58(C), pages 13-25.
    2. Hiroki Tanikawa & Tomer Fishman & Keijiro Okuoka & Kenji Sugimoto, 2015. "The Weight of Society Over Time and Space: A Comprehensive Account of the Construction Material Stock of Japan, 1945–2010," Journal of Industrial Ecology, Yale University, vol. 19(5), pages 778-791, October.
    3. Juraj Holec & Martin Šveda & Daniel Szatmári & Ján Feranec & Hana Bobáľová & Monika Kopecká & Pavel Šťastný, 2021. "Heat risk assessment based on mobile phone data: case study of Bratislava, Slovakia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 3099-3120, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao Wang & Huimin Yan & Yunfeng Hu & Yue Xi & Yichen Yang, 2022. "Consistency and Accuracy of Four High-Resolution LULC Datasets—Indochina Peninsula Case Study," Land, MDPI, vol. 11(5), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Denant-Boemont, Laurent & Gaigné, Carl & Gaté, Romain, 2018. "Urban spatial structure, transport-related emissions and welfare," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 29-45.
    2. Yoshida, Keisuke & Fishman, Tomer & Okuoka, Keijiro & Tanikawa, Hiroki, 2017. "Material stock's overburden: Automatic spatial detection and estimation of domestic extraction and hidden material flows," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 165-175.
    3. Shuntian Xu & Huaxuan Wang & Xin Tian & Tao Wang & Hiroki Tanikawa, 2022. "From efficiency to equity: Changing patterns of China's regional transportation systems from an in‐use steel stocks perspective," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 548-561, April.
    4. Rainald Borck & Takatoshi Tabuchi, 2019. "Pollution and city size: can cities be too small?," Journal of Economic Geography, Oxford University Press, vol. 19(5), pages 995-1020.
    5. Virág, Doris & Wiedenhofer, Dominik & Baumgart, André & Matej, Sarah & Krausmann, Fridolin & Min, Jihoon & Rao, Narasimha D. & Haberl, Helmut, 2022. "How much infrastructure is required to support decent mobility for all? An exploratory assessment," Ecological Economics, Elsevier, vol. 200(C).
    6. Miatto, Alessio & Schandl, Heinz & Tanikawa, Hiroki, 2017. "How important are realistic building lifespan assumptions for material stock and demolition waste accounts?," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 143-154.
    7. Carozzi, Felipe & Roth, Sefi, 2019. "Dirty density: air quality and the density of American cities," LSE Research Online Documents on Economics 103393, London School of Economics and Political Science, LSE Library.
    8. Mendez-Guerra, Carlos, 2019. "Environmental Efficiency and Regional Convergence Clusters in Japan: A Nonparametric Density Approach," MPRA Paper 92245, University Library of Munich, Germany.
    9. Claudio Zandonella Callegher & Gianluca Grazieschi & Eric Wilczynski & Ulrich Filippi Oberegger & Simon Pezzutto, 2023. "Assessment of Building Materials in the European Residential Building Stock: An Analysis at EU27 Level," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    10. C. Grislain-Letremy & J. Sixou & A. Sotura, 2024. "Urban Heat Islands and Inequalities: Evidence from French Cities," Documents de Travail de l'Insee - INSEE Working Papers 2024-21, Institut National de la Statistique et des Etudes Economiques.
    11. Yoshida, Jun & Kono, Tatsuhito, 2020. "Land use policies considering a natural ecosystem," Regional Science and Urban Economics, Elsevier, vol. 83(C).
    12. Carozzi, Felipe & Roth, Sefi, 2020. "Dirty Density: Air Quality and the Density of American Cities," IZA Discussion Papers 13191, Institute of Labor Economics (IZA).
    13. Simon Merschroth & Alessio Miatto & Steffi Weyand & Hiroki Tanikawa & Liselotte Schebek, 2020. "Lost Material Stock in Buildings due to Sea Level Rise from Global Warming: The Case of Fiji Islands," Sustainability, MDPI, vol. 12(3), pages 1-19, January.
    14. Ahlfeldt, Gabriel M. & Barr, Jason, 2022. "The economics of skyscrapers: A synthesis," Journal of Urban Economics, Elsevier, vol. 129(C).
    15. Borck, Rainald, 2019. "Public transport and urban pollution," Regional Science and Urban Economics, Elsevier, vol. 77(C), pages 356-366.
    16. Larson, William & Yezer, Anthony, 2015. "The energy implications of city size and density," Journal of Urban Economics, Elsevier, vol. 90(C), pages 35-49.
    17. Natthanij Soonsawad & Raymundo Marcos‐Martinez & Heinz Schandl, 2024. "City‐scale assessment of the material and environmental footprint of buildings using an advanced building information model: A case study from Canberra, Australia," Journal of Industrial Ecology, Yale University, vol. 28(2), pages 247-261, April.
    18. Georg Schiller & Tamara Bimesmeier & Anh T.V. Pham, 2020. "Method for Quantifying Supply and Demand of Construction Minerals in Urban Regions—A Case Study of Hanoi and Its Hinterland," Sustainability, MDPI, vol. 12(11), pages 1-23, May.
    19. Pflüger, Michael, 2021. "City size, pollution and emission policies," Journal of Urban Economics, Elsevier, vol. 126(C).
    20. Shogo Eguchi, 2017. "Understanding productivity declines of resource accumulation in the prefectures of Japan," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 19(2), pages 337-357, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:4:p:590-:d:796557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.