IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i12p2136-d985363.html
   My bibliography  Save this article

Testing the Effects of Water-Saving Technologies Adapted to Drought: Empirical Evidence from the Huang-Huai-Hai Region in China

Author

Listed:
  • Chunxiao Song

    (College of Economics and Management, Henan Agricultural University, Zhengzhou 450046, China)

  • Yue Rong

    (College of Economics and Management, Henan Agricultural University, Zhengzhou 450046, China)

  • Ruifeng Liu

    (College of Economics and Management, Henan Agricultural University, Zhengzhou 450046, China)

  • Les Oxley

    (School of Accounting, Economics and Finance, University of Waikato, Hamilton 3240, New Zealand)

  • Hengyun Ma

    (College of Economics and Management, Henan Agricultural University, Zhengzhou 450046, China)

Abstract

The aggravation of extreme weather events has dramatically increased the risk of severe water shortages and seriously threatened agricultural production. The Huang-Huai-Hai region, an important agricultural production region in China, is subject to a severe water shortage and is often hit by drought. As a result, water-saving technologies (WSTs) have been implemented. It remains unclear how effectively these WSTs can reduce crop yield loss, crop yield variation, and the loss of net crop income caused by water scarcity. Therefore, this paper aimed to analyze the role of WSTs in response to drought by establishing a multi-objective expected utility function based on 988 farmers across the Huang-Huai-Hai region. Econometric analysis employing an endogenous switching regression model showed that using WSTs can significantly reduce crop yield loss and net income loss caused by drought. Adopting household-based WSTs or community-based water-saving technology generates even greater positive effects on crop yield and farmers’ net income. Therefore, the government should promote farmers’ adoption of more advanced WSTs by increasing subsidies and strengthening policy support.

Suggested Citation

  • Chunxiao Song & Yue Rong & Ruifeng Liu & Les Oxley & Hengyun Ma, 2022. "Testing the Effects of Water-Saving Technologies Adapted to Drought: Empirical Evidence from the Huang-Huai-Hai Region in China," Land, MDPI, vol. 11(12), pages 1-22, November.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:12:p:2136-:d:985363
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/12/2136/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/12/2136/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guo, Erjing & Yang, Xiaoguang & Li, Tao & Zhang, Tianyi & Wilson, Lloyed Ted & Wang, Xiaoyu & Zheng, Dongxiao & Yang, Yubin, 2021. "Does ENSO strongly affect rice yield and water application in Northeast China?," Agricultural Water Management, Elsevier, vol. 245(C).
    2. Zhang, Biao & Fu, Zetian & Wang, Jieqiong & Zhang, Lingxian, 2019. "Farmers’ adoption of water-saving irrigation technology alleviates water scarcity in metropolis suburbs: A case study of Beijing, China," Agricultural Water Management, Elsevier, vol. 212(C), pages 349-357.
    3. Liu, Moucheng & Yang, Lun & Bai, Yanying & Min, Qingwen, 2018. "The impacts of farmers’ livelihood endowments on their participation in eco-compensation policies: Globally important agricultural heritage systems case studies from China," Land Use Policy, Elsevier, vol. 77(C), pages 231-239.
    4. Mi, Qiao & Li, Xiandong & Li, Xianmei & Yu, Guoxin & Gao, Jianzhong, 2021. "Cotton farmers' adaptation to arid climates: Waiting times to adopt water-saving technology," Agricultural Water Management, Elsevier, vol. 244(C).
    5. Salvatore Di Falco & Marcella Veronesi & Mahmud Yesuf, 2011. "Does Adaptation to Climate Change Provide Food Security? A Micro-Perspective from Ethiopia," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(3), pages 825-842.
    6. Uttam Khanal & Clevo Wilson & Boon L. Lee & Viet-Ngu Hoang, 2018. "Climate change adaptation strategies and food productivity in Nepal: a counterfactual analysis," Climatic Change, Springer, vol. 148(4), pages 575-590, June.
    7. Huang, Qiuqiong & Wang, Jinxia & Li, Yumin, 2017. "Do water saving technologies save water? Empirical evidence from North China," Journal of Environmental Economics and Management, Elsevier, vol. 82(C), pages 1-16.
    8. Wang, Yangjie & Huang, Jikun & Wang, Jinxia & Findlay, Christopher, 2018. "Mitigating rice production risks from drought through improving irrigation infrastructure and management in China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(1), January.
    9. J. M. Antle & W. J. Goodger, 1984. "Measuring Stochastic Technology: The Case of Tulare Milk Production," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 66(3), pages 342-350.
    10. Shudong Zhou & Thomas Herzfeld & Thomas Glauben & Yunhua Zhang & Bingchuan Hu, 2008. "Factors Affecting Chinese Farmers' Decisions to Adopt a Water‐Saving Technology," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 56(1), pages 51-61, March.
    11. Jara-Rojas, Roberto & Bravo-Ureta, Boris E. & Díaz, José, 2012. "Adoption of water conservation practices: A socioeconomic analysis of small-scale farmers in Central Chile," Agricultural Systems, Elsevier, vol. 110(C), pages 54-62.
    12. Antle, John M, 1983. "Testing the Stochastic Structure of Production: A Flexible Moment-based Approach," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(3), pages 192-201, July.
    13. Jyrki Wallenius & James S. Dyer & Peter C. Fishburn & Ralph E. Steuer & Stanley Zionts & Kalyanmoy Deb, 2008. "Multiple Criteria Decision Making, Multiattribute Utility Theory: Recent Accomplishments and What Lies Ahead," Management Science, INFORMS, vol. 54(7), pages 1336-1349, July.
    14. Jikun Huang & Yangjie Wang & Jinxia Wang, 2015. "Farmers' Adaptation to Extreme Weather Events through Farm Management and Its Impacts on the Mean and Risk of Rice Yield in China," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(2), pages 602-617.
    15. Li, Jinpeng & Wang, Yunqi & Zhang, Meng & Liu, Yang & Xu, Xuexin & Lin, Gang & Wang, Zhimin & Yang, Youming & Zhang, Yinghua, 2019. "Optimized micro-sprinkling irrigation scheduling improves grain yield by increasing the uptake and utilization of water and nitrogen during grain filling in winter wheat," Agricultural Water Management, Elsevier, vol. 211(C), pages 59-69.
    16. Chunxiao Song & Ruifeng Liu & Les Oxley & Hengyun Ma, 2018. "The adoption and impact of engineering‐type measures to address climate change: evidence from the major grain‐producing areas in China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(4), pages 608-635, October.
    17. Alauddin, Mohammad & Rashid Sarker, Md. Abdur & Islam, Zeenatul & Tisdell, Clement, 2020. "Adoption of alternate wetting and drying (AWD) irrigation as a water-saving technology in Bangladesh: Economic and environmental considerations," Land Use Policy, Elsevier, vol. 91(C).
    18. Michael Lokshin & Zurab Sajaia, 2004. "Maximum likelihood estimation of endogenous switching regression models," Stata Journal, StataCorp LP, vol. 4(3), pages 282-289, September.
    19. Kamal Vatta & R. S. Sidhu & Upmanu Lall & P. S. Birthal & Garima Taneja & Baljinder Kaur & Naresh Devineni & Charlotte MacAlister, 2018. "Assessing the economic impact of a low-cost water-saving irrigation technology in Indian Punjab: the tensiometer," Water International, Taylor & Francis Journals, vol. 43(2), pages 305-321, February.
    20. Richard E. Just & Rulon D. Pope, 1979. "Production Function Estimation and Related Risk Considerations," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 61(2), pages 276-284.
    21. Lee, Lung-Fei, 1978. "Unionism and Wage Rates: A Simultaneous Equations Model with Qualitative and Limited Dependent Variables," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 19(2), pages 415-433, June.
    22. Ojo, T.O. & Baiyegunhi, L.J.S., 2020. "Determinants of climate change adaptation strategies and its impact on the net farm income of rice farmers in south-west Nigeria," Land Use Policy, Elsevier, vol. 95(C).
    23. Riesgo, Laura & Gomez-Limon, Jose A., 2006. "Multi-criteria policy scenario analysis for public regulation of irrigated agriculture," Agricultural Systems, Elsevier, vol. 91(1-2), pages 1-28, November.
    24. Tianyi Zhang & Jinxia Wang & Yishu Teng, 2017. "Adaptive Effectiveness of Irrigated Area Expansion in Mitigating the Impacts of Climate Change on Crop Yields in Northern China," Sustainability, MDPI, vol. 9(5), pages 1-14, May.
    25. Wang, Hong & Zhang, Yan & Zhang, Yaojun & McDaniel, Marshall D. & Sun, Lan & Su, Wei & Fan, Xiaorong & Liu, Shuhua & Xiao, Xin, 2020. "Water-saving irrigation is a ‘win-win’ management strategy in rice paddies – With both reduced greenhouse gas emissions and enhanced water use efficiency," Agricultural Water Management, Elsevier, vol. 228(C).
    26. Zou, Xiaoxia & Li, Yu’e & Cremades, Roger & Gao, Qingzhu & Wan, Yunfan & Qin, Xiaobo, 2013. "Cost-effectiveness analysis of water-saving irrigation technologies based on climate change response: A case study of China," Agricultural Water Management, Elsevier, vol. 129(C), pages 9-20.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salvatore Falco & Marcella Veronesi, 2018. "Managing Environmental Risk in Presence of Climate Change: The Role of Adaptation in the Nile Basin of Ethiopia," Natural Resource Management and Policy, in: Leslie Lipper & Nancy McCarthy & David Zilberman & Solomon Asfaw & Giacomo Branca (ed.), Climate Smart Agriculture, pages 497-526, Springer.
    2. Fonda Jane Awuor & Ibrahim Ndegwa Macharia & Richard Mbithi Mulwa & Maurice Juma Ogada, 2024. "Adoption and impact of integrated agriculture aquaculture on income and productivity of smallholder fish farmers in Kenya," SN Business & Economics, Springer, vol. 4(1), pages 1-25, January.
    3. Jikun Huang & Yangjie Wang & Jinxia Wang, 2015. "Farmers' Adaptation to Extreme Weather Events through Farm Management and Its Impacts on the Mean and Risk of Rice Yield in China," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(2), pages 602-617.
    4. Song, Chunxiao & Liu, Ruifeng & Oxley, Oxley & Ma, Hengyun, 2018. "The adoption and impact of engineering-type measures to address climate change: evidence from the major grain-producing areas in China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(4), October.
    5. Ojo, T.O. & Baiyegunhi, L.J.S., 2020. "Determinants of climate change adaptation strategies and its impact on the net farm income of rice farmers in south-west Nigeria," Land Use Policy, Elsevier, vol. 95(C).
    6. Mintewab Bezabih & Remidius Ruhinduka & Mare Sarr, 2016. "Climate change perception and system of rice intensification (SRI) impact on dispersion and downside risk: a moment approximation approach," GRI Working Papers 256, Grantham Research Institute on Climate Change and the Environment.
    7. Jordán, Cristian & Speelman, Stijn, 2020. "On-farm adoption of irrigation technologies in two irrigated valleys in Central Chile: The effect of relative abundance of water resources," Agricultural Water Management, Elsevier, vol. 236(C).
    8. Shuhong Wang & Ning Yin & Zhihai Yang, 2021. "Factors affecting sustained adoption of irrigation water-saving technologies in groundwater over-exploited areas in the North China Plain," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10528-10546, July.
    9. Salvatore Di Falco & Marcella Veronesi, 2011. "On Adaptation to Climate Change and Risk Exposure in the Nile Basin of Ethiopia," IED Working paper 11-15, IED Institute for Environmental Decisions, ETH Zurich.
    10. Goundan, Anatole & Faye, Amy & Henning, Christian H. C. A. & Collins-Sowah, Peron A., 2020. "Investing in risky inputs in Senegal: Implications for farm profit and food production," Working Papers of Agricultural Policy WP2020-07, University of Kiel, Department of Agricultural Economics, Chair of Agricultural Policy.
    11. Salvatore Di Falco & Marcella Veronesi, 2011. "On Adaptation to Climate Change and Risk Exposure in the Nile Basin of Ethiopia," IED Working paper 11-15, IED Institute for Environmental Decisions, ETH Zurich.
    12. Mi, Qiao & Li, Xiandong & Li, Xianmei & Yu, Guoxin & Gao, Jianzhong, 2021. "Cotton farmers' adaptation to arid climates: Waiting times to adopt water-saving technology," Agricultural Water Management, Elsevier, vol. 244(C).
    13. Jawid, Asadullah & Khadjavi, Menusch, 2019. "Adaptation to climate change in Afghanistan: Evidence on the impact of external interventions," Economic Analysis and Policy, Elsevier, vol. 64(C), pages 64-82.
    14. Shahzad, Muhammad Faisal & Abdulai, Awudu, 2020. "Adaptation to extreme weather conditions and farm performance in rural Pakistan," Agricultural Systems, Elsevier, vol. 180(C).
    15. Hongliang Zhang & John M. Antle, 2018. "Weather, Climate and Production Risk," IRENE Working Papers 18-01, IRENE Institute of Economic Research.
    16. Lien, Gudbrand & Kumbhakar, Subal C. & Mishra, Ashok K. & Hardaker, J. Brian, 2022. "Does risk management affect productivity of organic rice farmers in India? Evidence from a semiparametric production model," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1392-1402.
    17. Yangjie Wang & Jikun Huang & Jinxia Wang & Christopher Findlay, 2018. "Mitigating rice production risks from drought through improving irrigation infrastructure and management in China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(1), pages 161-176, January.
    18. Kim, Kwansoo & Chavas, Jean-Paul, 2003. "Technological change and risk management: an application to the economics of corn production," Agricultural Economics, Blackwell, vol. 29(2), pages 125-142, October.
    19. Yong Liu & Jorge Ruiz-Menjivar & Junbiao Zhang, 2023. "Do soil nutrient management practices improve climate resilience? Empirical evidence from rice farmers in central China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 10029-10054, September.
    20. Kassie, Menale & Pender, John & Yesuf, Mahmud & Köhln, Gunnar & Mulugeta, Elias, 2008. "The Role of Soil Conservation on Mean Crop Yield and Variance of Yield: Evidence from the Ethiopian Highlands," RFF Working Paper Series dp-08-08-efd, Resources for the Future.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:12:p:2136-:d:985363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.