IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i1p41-d475160.html
   My bibliography  Save this article

Recessive Transition Mechanism of Arable Land Use Based on the Perspective of Coupling Coordination of Input–Output: A Case Study of 31 Provinces in China

Author

Listed:
  • Yi Lou

    (College of Geography and Environment, Shandong Normal University, Jinan 250000, China)

  • Guanyi Yin

    (College of Geography and Environment, Shandong Normal University, Jinan 250000, China)

  • Yue Xin

    (College of Geography and Environment, Shandong Normal University, Jinan 250000, China)

  • Shuai Xie

    (College of Geography and Environment, Shandong Normal University, Jinan 250000, China)

  • Guanghao Li

    (College of Geography and Environment, Shandong Normal University, Jinan 250000, China)

  • Shuang Liu

    (College of Geography and Environment, Shandong Normal University, Jinan 250000, China)

  • Xiaoming Wang

    (College of Geography and Environment, Shandong Normal University, Jinan 250000, China)

Abstract

In the rapid process of urbanization in China, arable land resources are faced with dual challenges in terms of quantity and quality. Starting with the change in the coupling coordination relationship between the input and output on arable land, this study applies an evaluation model of the degree of coupling coordination between the input and output (D_CCIO) on arable land and deeply analyzes the recessive transition mechanism and internal differences in arable land use modes in 31 provinces on mainland China. The results show that the total amount and the amount per unit area of the input and output on arable land in China have presented different spatio-temporal trends, along with the mismatched movement of the spatial barycenter. Although the D_CCIO on arable land increases slowly as a whole, 31 provinces show different recessive transition mechanisms of arable land use, which is hidden in the internal changes in the input–output structure. The results of this study highlight the different recessive transition patterns of arable land use in different provinces of China, which points to the outlook for higher technical input, optimized planting structure, and the coordination of human-land relationships.

Suggested Citation

  • Yi Lou & Guanyi Yin & Yue Xin & Shuai Xie & Guanghao Li & Shuang Liu & Xiaoming Wang, 2021. "Recessive Transition Mechanism of Arable Land Use Based on the Perspective of Coupling Coordination of Input–Output: A Case Study of 31 Provinces in China," Land, MDPI, vol. 10(1), pages 1-27, January.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:1:p:41-:d:475160
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/1/41/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/1/41/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. He, Li & Du, Yu & Wu, Shuang & Zhang, Zhaolong, 2021. "Evaluation of the agricultural water resource carrying capacity and optimization of a planting-raising structure," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Gucheng Li & Zhongchao Feng & Liangzhi You & Lixia Fan, 2013. "Re-examining the inverse relationship between farm size and efficiency," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 5(4), pages 473-488, November.
    3. Tian, Yishui & Zhao, Lixin & Meng, Haibo & Sun, Liying & Yan, Jinyue, 2009. "Estimation of un-used land potential for biofuels development in (the) People's Republic of China," Applied Energy, Elsevier, vol. 86(Supplemen), pages 77-85, November.
    4. Tian, Junfeng & Wang, Binyan & Zhang, Chuanrong & Li, Weidong & Wang, Shijun, 2020. "Mechanism of regional land use transition in underdeveloped areas of China: A case study of northeast China," Land Use Policy, Elsevier, vol. 94(C).
    5. Xie, Hualin & Chen, Qianru & Wang, Wei & He, Yafen, 2018. "Analyzing the green efficiency of arable land use in China," Technological Forecasting and Social Change, Elsevier, vol. 133(C), pages 15-28.
    6. Li, Jintao & Li, Yixue, 2019. "Influence measurement of rapid urbanization on agricultural production factors based on provincial panel data," Socio-Economic Planning Sciences, Elsevier, vol. 67(C), pages 69-77.
    7. Zhu, Fengkai & Zhang, Fengrong & Ke, Xinli, 2018. "Rural industrial restructuring in China’s metropolitan suburbs: Evidence from the land use transition of rural enterprises in suburban Beijing," Land Use Policy, Elsevier, vol. 74(C), pages 121-129.
    8. Chen, Kunqiu & Long, Hualou & Liao, Liuwen & Tu, Shuangshuang & Li, Tingting, 2020. "Land use transitions and urban-rural integrated development: Theoretical framework and China’s evidence," Land Use Policy, Elsevier, vol. 92(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanbo Qu & Xiaozhen Dong & Lingyun Zhan & Hongyun Si & Zongli Ping & Weiya Zhu, 2021. "Scale Transition and Structure–Function Synergy Differentiation of Rural Residential Land: A Dimensionality Reduction Transmission Process from Macro to Micro Scale," Land, MDPI, vol. 10(6), pages 1-26, June.
    2. Shuai Xie & Guanyi Yin & Wei Wei & Qingzhi Sun & Zhan Zhang, 2022. "Spatial–Temporal Change in Paddy Field and Dryland in Different Topographic Gradients: A Case Study of China during 1990–2020," Land, MDPI, vol. 11(10), pages 1-20, October.
    3. Xiuyu Huang & Ying Wang & Wanyi Liang & Zhaojun Wang & Xiao Zhou & Qinqiang Yan, 2023. "Spatial–Temporal Evolution and Driving Factors of the Low–Carbon Transition of Farmland Use in Coastal Areas of Guangdong Province," Land, MDPI, vol. 12(5), pages 1-23, May.
    4. Hualou Long & Xiangbin Kong & Shougeng Hu & Yurui Li, 2021. "Land Use Transitions under Rapid Urbanization: A Perspective from Developing China," Land, MDPI, vol. 10(9), pages 1-9, September.
    5. Meijing Chen & Zhongke Bai & Qingri Wang & Zeyu Shi, 2021. "Habitat Quality Effect and Driving Mechanism of Land Use Transitions: A Case Study of Henan Water Source Area of the Middle Route of the South-to-North Water Transfer Project," Land, MDPI, vol. 10(8), pages 1-20, July.
    6. Jianhui Dong & Wenju Yun & Kening Wu & Shaoshuai Li & Bingrui Liu & Qiaoyuan Lu, 2023. "Spatio-Temporal Analysis of Cultivated Land from 2010 to 2020 in Long’an County, Karst Region, China," Land, MDPI, vol. 12(2), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hualou Long & Yingnan Zhang & Li Ma & Shuangshuang Tu, 2021. "Land Use Transitions: Progress, Challenges and Prospects," Land, MDPI, vol. 10(9), pages 1-20, August.
    2. Xinyao Li & Lingzhi Wang & Bryan Pijanowski & Lingpeng Pan & Hichem Omrani & Anqi Liang & Yi Qu, 2022. "The Spatio-Temporal Pattern and Transition Mode of Recessive Cultivated Land Use Morphology in the Huaibei Region of the Jiangsu Province," Land, MDPI, vol. 11(11), pages 1-16, November.
    3. Zhiheng Yang & Nengneng Shen & Yanbo Qu & Bailin Zhang, 2021. "Association between Rural Land Use Transition and Urban–Rural Integration Development: From 2009 to 2018 Based on County-Level Data in Shandong Province, China," Land, MDPI, vol. 10(11), pages 1-22, November.
    4. Shangan Ke & Yueqi Wu & Haiying Cui & Xinhai Lu & Kun Ge & Danling Chen, 2021. "The Temporal-Spatial Pattern and Coupling Coordination of the Green Transition of Farmland Use: Evidence from Hubei Province," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    5. Dong Han & Jiajun Qiao & Qiankun Zhu & Jie Xiao & Yuling Ma, 2022. "Endogenous Driving Forces in Ecology-Production-Living Space Changes at Micro-Scale: A Mountain Town Example in Inland China," Land, MDPI, vol. 11(12), pages 1-30, December.
    6. Feifei Jiang & Fu Chen & Yan Sun & Ziyi Hua & Xinhua Zhu & Jing Ma, 2023. "Spatiotemporal Pattern and Driving Mechanism of Cultivated Land Use Transition in China," Land, MDPI, vol. 12(10), pages 1-20, September.
    7. Xu, Mengyao & Zhang, Zhengfeng, 2021. "Spatial differentiation characteristics and driving mechanism of rural-industrial Land transition: A case study of Beijing-Tianjin-Hebei region, China," Land Use Policy, Elsevier, vol. 102(C).
    8. Yuanyuan Yang & Wenkai Bao & Yuheng Li & Yongsheng Wang & Zongfeng Chen, 2020. "Land Use Transition and Its Eco-Environmental Effects in the Beijing–Tianjin–Hebei Urban Agglomeration: A Production–Living–Ecological Perspective," Land, MDPI, vol. 9(9), pages 1-24, August.
    9. Weng, Yuwei & Chang, Shiyan & Cai, Wenjia & Wang, Can, 2019. "Exploring the impacts of biofuel expansion on land use change and food security based on a land explicit CGE model: A case study of China," Applied Energy, Elsevier, vol. 236(C), pages 514-525.
    10. Ellen Banzhaf & Sally Anderson & Gwendoline Grandin & Richard Hardiman & Anne Jensen & Laurence Jones & Julius Knopp & Gregor Levin & Duncan Russel & Wanben Wu & Jun Yang & Marianne Zandersen, 2022. "Urban-Rural Dependencies and Opportunities to Design Nature-Based Solutions for Resilience in Europe and China," Land, MDPI, vol. 11(4), pages 1-25, March.
    11. Chao Zhang & Ruifa Hu, 2022. "Adoption of Direct Seeding, Yield and Fertilizer Use in Rice Production: Empirical Evidence from China," Agriculture, MDPI, vol. 12(9), pages 1-15, September.
    12. Sheng Liu & Ming Bai & Min Yao & Ke Huang, 2021. "Identifying the natural and anthropogenic factors influencing the spatial disparity of population hollowing in traditional villages within a prefecture-level city," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-21, April.
    13. Li, Lu & Zhou, Yan & Li, Mo & Cao, Kaihua & Tao, Yanhuai & Liu, Yangdachuan, 2022. "Integrated modelling for cropping pattern optimization and planning considering the synergy of water resources-society-economy-ecology-environment system," Agricultural Water Management, Elsevier, vol. 271(C).
    14. Wancong Li & Hong Li & Shijun Wang & Zhiqiang Feng, 2022. "Spatiotemporal Evolution of County-Level Land Use Structure in the Context of Urban Shrinkage: Evidence from Northeast China," Land, MDPI, vol. 11(10), pages 1-19, October.
    15. Batidzirai, B. & Smeets, E.M.W. & Faaij, A.P.C., 2012. "Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6598-6630.
    16. Jinkai Li & Jueying Chen & Heguang Liu, 2021. "Sustainable Agricultural Total Factor Productivity and Its Spatial Relationship with Urbanization in China," Sustainability, MDPI, vol. 13(12), pages 1-15, June.
    17. Yang Qi & Mingyue Gao & Haoyu Wang & Huijie Ding & Jianxu Liu & Songsak Sriboonchitta, 2023. "Does Marketization Promote High-Quality Agricultural Development in China?," Sustainability, MDPI, vol. 15(12), pages 1-28, June.
    18. Xia, Min & Zhang, Yanyuan & Zhang, Zihong & Liu, Jingjie & Ou, Weixin & Zou, Wei, 2020. "Modeling agricultural land use change in a rapid urbanizing town: Linking the decisions of government, peasant households and enterprises," Land Use Policy, Elsevier, vol. 90(C).
    19. Hua Xia & Shidong Ge & Xinyu Zhang & Gunwoo Kim & Yakai Lei & Yang Liu, 2021. "Spatiotemporal Dynamics of Green Infrastructure in an Agricultural Peri-Urban Area: A Case Study of Baisha District in Zhengzhou, China," Land, MDPI, vol. 10(8), pages 1-21, July.
    20. Cheng, Mingyang & Yansui Liu, & Zhou, Yang, 2019. "Measuring the symbiotic development of rural housing and industry: A case study of Fuping County in the Taihang Mountains in China," Land Use Policy, Elsevier, vol. 82(C), pages 307-316.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:1:p:41-:d:475160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.