IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i10p1839-d1248330.html
   My bibliography  Save this article

Spatiotemporal Pattern and Driving Mechanism of Cultivated Land Use Transition in China

Author

Listed:
  • Feifei Jiang

    (School of Public Administration, Hohai University, Nanjing 211100, China)

  • Fu Chen

    (School of Public Administration, Hohai University, Nanjing 211100, China)

  • Yan Sun

    (School of Public Administration, Hohai University, Nanjing 211100, China)

  • Ziyi Hua

    (School of Public Administration, Hohai University, Nanjing 211100, China)

  • Xinhua Zhu

    (School of Public Administration, Hohai University, Nanjing 211100, China)

  • Jing Ma

    (School of Public Administration, Hohai University, Nanjing 211100, China)

Abstract

In the past 20 years, the global economy has undergone tremendous changes with rapid industrialization and urbanization. Cultivated land is an important spatial carrier for human production and life, and its use pattern also changes with socioeconomic development. Natural, economic, social, and policy factors jointly drive the cultivated land use transition (CLUT). However, the spatiotemporal pattern and evolution characteristics of the CLUT at the national scale have not yet been clarified in China. Factors that play a leading role in the transition are also unclear. To this end, this paper explores the spatiotemporal evolution characteristics of the CLUT at a national scale and analyzes the main drivers and spatial differentiation rules of the transition based on relevant data from 31 provincial units on the Chinese mainland from 2000 to 2019. The results show that: (1) The CLUT in China from 2000 to 2019 had obvious stage characteristics. (2) The coordination degree of the CLUT was enhanced overall. Areas with a higher degree of coordination presented a spatial distribution pattern of small agglomeration and large dispersion, while low-level areas were distributed in spots. (3) Different drivers had various effects on the CLUT. The topography played an inhibitory role in the transition, and its influence showed obvious differences between the east and west regions. The effect of the construction land demand index shifted from inhibition to promotion, while the effects of the gross agricultural economic output and the total power of agricultural machinery in the transition were insignificant.

Suggested Citation

  • Feifei Jiang & Fu Chen & Yan Sun & Ziyi Hua & Xinhua Zhu & Jing Ma, 2023. "Spatiotemporal Pattern and Driving Mechanism of Cultivated Land Use Transition in China," Land, MDPI, vol. 12(10), pages 1-20, September.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:10:p:1839-:d:1248330
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/10/1839/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/10/1839/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xinyao Li & Lingzhi Wang & Bryan Pijanowski & Lingpeng Pan & Hichem Omrani & Anqi Liang & Yi Qu, 2022. "The Spatio-Temporal Pattern and Transition Mode of Recessive Cultivated Land Use Morphology in the Huaibei Region of the Jiangsu Province," Land, MDPI, vol. 11(11), pages 1-16, November.
    2. Shangan Ke & Yueqi Wu & Haiying Cui & Xinhai Lu & Kun Ge & Danling Chen, 2021. "The Temporal-Spatial Pattern and Coupling Coordination of the Green Transition of Farmland Use: Evidence from Hubei Province," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    3. Chaofeng Li & Yasir Ahmed Solangi & Sharafat Ali, 2023. "Evaluating the Factors of Green Finance to Achieve Carbon Peak and Carbon Neutrality Targets in China: A Delphi and Fuzzy AHP Approach," Sustainability, MDPI, vol. 15(3), pages 1-21, February.
    4. Guangdong Wu , & Kaifeng Duan & Jian Zuo & Xianbo Zhao & Daizhong Tang, 2017. "Integrated Sustainability Assessment of Public Rental Housing Community Based on a Hybrid Method of AHP-Entropy Weight and Cloud Model," Sustainability, MDPI, vol. 9(4), pages 1-25, April.
    5. Chen, Kunqiu & Long, Hualou & Liao, Liuwen & Tu, Shuangshuang & Li, Tingting, 2020. "Land use transitions and urban-rural integrated development: Theoretical framework and China’s evidence," Land Use Policy, Elsevier, vol. 92(C).
    6. Tian, Junfeng & Wang, Binyan & Zhang, Chuanrong & Li, Weidong & Wang, Shijun, 2020. "Mechanism of regional land use transition in underdeveloped areas of China: A case study of northeast China," Land Use Policy, Elsevier, vol. 94(C).
    7. Lu, Xiao & Shi, Yangyang & Chen, Changling & Yu, Miao, 2017. "Monitoring cropland transition and its impact on ecosystem services value in developed regions of China: A case study of Jiangsu Province," Land Use Policy, Elsevier, vol. 69(C), pages 25-40.
    8. Sheela Bhuvanendran Bhagya & Anita Saji Sumi & Sankaran Balaji & Jean Homian Danumah & Romulus Costache & Ambujendran Rajaneesh & Ajayakumar Gokul & Chandini Padmanabhapanicker Chandrasenan & Renata P, 2023. "Landslide Susceptibility Assessment of a Part of the Western Ghats (India) Employing the AHP and F-AHP Models and Comparison with Existing Susceptibility Maps," Land, MDPI, vol. 12(2), pages 1-29, February.
    9. Zhuo Chen & Myongsop Pak, 2017. "A Delphi analysis on green performance evaluation indices for ports in China," Maritime Policy & Management, Taylor & Francis Journals, vol. 44(5), pages 537-550, July.
    10. Songtang He & Daojie Wang & Yong Li & Peng Zhao, 2018. "Land Use Changes and Their Driving Forces in a Debris Flow Active Area of Gansu Province, China," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    11. Wang, Liye & Zhang, Siyu & Xiong, Qiangqiang & Liu, Yu & Liu, Yanfang & Liu, Yaolin, 2022. "Spatiotemporal dynamics of cropland expansion and its driving factors in the Yangtze River Economic Belt: A nuanced analysis at the county scale," Land Use Policy, Elsevier, vol. 119(C).
    12. Ge, Dazhuan & Long, Hualou & Zhang, Yingnan & Ma, Li & Li, Tingting, 2018. "Farmland transition and its influences on grain production in China," Land Use Policy, Elsevier, vol. 70(C), pages 94-105.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinyao Li & Lingzhi Wang & Bryan Pijanowski & Lingpeng Pan & Hichem Omrani & Anqi Liang & Yi Qu, 2022. "The Spatio-Temporal Pattern and Transition Mode of Recessive Cultivated Land Use Morphology in the Huaibei Region of the Jiangsu Province," Land, MDPI, vol. 11(11), pages 1-16, November.
    2. Dong Han & Jiajun Qiao & Qiankun Zhu & Jie Xiao & Yuling Ma, 2022. "Endogenous Driving Forces in Ecology-Production-Living Space Changes at Micro-Scale: A Mountain Town Example in Inland China," Land, MDPI, vol. 11(12), pages 1-30, December.
    3. Hualou Long & Yingnan Zhang & Li Ma & Shuangshuang Tu, 2021. "Land Use Transitions: Progress, Challenges and Prospects," Land, MDPI, vol. 10(9), pages 1-20, August.
    4. Xing Niu & Fenghua Liao & Ziming Liu & Guancen Wu, 2022. "Spatial–Temporal Characteristics and Driving Mechanisms of Land–Use Transition from the Perspective of Urban–Rural Transformation Development: A Case Study of the Yangtze River Delta," Land, MDPI, vol. 11(5), pages 1-20, April.
    5. Yuanyuan Yang & Wenkai Bao & Yuheng Li & Yongsheng Wang & Zongfeng Chen, 2020. "Land Use Transition and Its Eco-Environmental Effects in the Beijing–Tianjin–Hebei Urban Agglomeration: A Production–Living–Ecological Perspective," Land, MDPI, vol. 9(9), pages 1-24, August.
    6. Tao, Jieyi & Lu, Yuqi & Ge, Dazhuan & Dong, Ping & Gong, Xiao & Ma, Xiaobin, 2022. "The spatial pattern of agricultural ecosystem services from the production-living-ecology perspective: A case study of the Huaihai Economic Zone, China," Land Use Policy, Elsevier, vol. 122(C).
    7. Xiao Lyu & Yanan Wang & Yuntai Zhao & Shandong Niu, 2022. "Spatio‐temporal pattern and mechanism of coordinated development of “population–land–industry–money” in rural areas of three provinces in Northeast China," Growth and Change, Wiley Blackwell, vol. 53(3), pages 1333-1361, September.
    8. Wencun Zhou & Zhengjia Liu & Sisi Wang, 2023. "Spatiotemporal Dynamics of the Cropland Area and Its Response to Increasing Regional Extreme Weather Events in the Farming-Pastoral Ecotone of Northern China during 1992–2020," Sustainability, MDPI, vol. 15(18), pages 1-28, September.
    9. Qiao, Weifeng & Hu, Yi & Jia, Kaiyang & He, Tianqi & Wang, Yahua, 2020. "Dynamic modes and ecological effects of salt field utilization in the Weifang coastal area, China: Implications for territorial spatial planning," Land Use Policy, Elsevier, vol. 99(C).
    10. Zhangxuan Qin & Xiaolin Liu & Xiaoyan Lu & Mengfei Li & Fei Li, 2022. "Grain Production Space Reconstruction and Its Influencing Factors in the Loess Plateau," IJERPH, MDPI, vol. 19(10), pages 1-18, May.
    11. Yi Lou & Guanyi Yin & Yue Xin & Shuai Xie & Guanghao Li & Shuang Liu & Xiaoming Wang, 2021. "Recessive Transition Mechanism of Arable Land Use Based on the Perspective of Coupling Coordination of Input–Output: A Case Study of 31 Provinces in China," Land, MDPI, vol. 10(1), pages 1-27, January.
    12. Xiao Lu & Yi Qu & Piling Sun & Wei Yu & Wenlong Peng, 2020. "Green Transition of Cultivated Land Use in the Yellow River Basin: A Perspective of Green Utilization Efficiency Evaluation," Land, MDPI, vol. 9(12), pages 1-22, November.
    13. Xiuyu Huang & Ying Wang & Wanyi Liang & Zhaojun Wang & Xiao Zhou & Qinqiang Yan, 2023. "Spatial–Temporal Evolution and Driving Factors of the Low–Carbon Transition of Farmland Use in Coastal Areas of Guangdong Province," Land, MDPI, vol. 12(5), pages 1-23, May.
    14. Lingzhi Wang & Anqi Liang & Xinyao Li & Chengge Jiang & Junjie Wu & Hichem Omrani, 2023. "Understanding Recessive Transition of Cultivated Land Use in Jilin Province, China (1990–2020): From Perspective of Productive-Living-Ecological Functions," Land, MDPI, vol. 12(9), pages 1-24, September.
    15. Meijing Chen & Zhongke Bai & Qingri Wang & Zeyu Shi, 2021. "Habitat Quality Effect and Driving Mechanism of Land Use Transitions: A Case Study of Henan Water Source Area of the Middle Route of the South-to-North Water Transfer Project," Land, MDPI, vol. 10(8), pages 1-20, July.
    16. Bowen Shan & Jian Liu & Yaqiu Liu & Huanhuan Wang & Ailing Wang, 2022. "How Is Construction Land Transition Related to Rural Transformation? Evidence from a Plain County in China Based on the Grey Correlation Model," Land, MDPI, vol. 11(5), pages 1-19, April.
    17. Xinyu Shi & Xiaoqing Zhao & Pei Huang & Zexian Gu & Junwei Pu & Shijie Zhou & Guoxun Qu & Qiaoqiao Zhao & Yan Feng & Yanjun Chen & Aimeng Xiang, 2023. "Rural Development under Poverty Governance: The Relationship between Rural Income and Land Use Transformation in Yunnan Province," Land, MDPI, vol. 12(2), pages 1-21, January.
    18. Xinhai Lu & Zhoumi Li & Hongzheng Wang & Yifeng Tang & Bixia Hu & Mingyue Gong & Yulong Li, 2022. "Evaluating Impact of Farmland Recessive Morphology Transition on High-Quality Agricultural Development in China," Land, MDPI, vol. 11(3), pages 1-19, March.
    19. Yuchen Pan & Li Ma & Hong Tang & Yiwen Wu & Zhongjian Yang, 2021. "Land Use Transitions under Rapid Urbanization in Chengdu-Chongqing Region: A Perspective of Coupling Water and Land Resources," Land, MDPI, vol. 10(8), pages 1-21, August.
    20. Ma, Li & Long, Hualou & Tu, Shuangshuang & Zhang, Yingnan & Zheng, Yuhan, 2020. "Farmland transition in China and its policy implications," Land Use Policy, Elsevier, vol. 92(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:10:p:1839-:d:1248330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.