IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i10p1622-d921919.html
   My bibliography  Save this article

Assessing Cultivated Land–Use Transition in the Major Grain-Producing Areas of China Based on an Integrated Framework

Author

Listed:
  • Tiangui Lv

    (School of Tourism and Urban Management, Jiangxi University of Finance and Economics, Nanchang 330013, China
    Institute of Ecological Civilization, Jiangxi University of Finance and Economics, Nanchang 330013, China)

  • Shufei Fu

    (School of Tourism and Urban Management, Jiangxi University of Finance and Economics, Nanchang 330013, China)

  • Xinmin Zhang

    (Institute of Ecological Civilization, Jiangxi University of Finance and Economics, Nanchang 330013, China)

  • Guangdong Wu

    (School of Public Policy and Administration, Chongqing University, Chongqing 400044, China)

  • Han Hu

    (School of Tourism and Urban Management, Jiangxi University of Finance and Economics, Nanchang 330013, China)

  • Junfeng Tian

    (School of Public Policy and Administration, Chongqing University, Chongqing 400044, China)

Abstract

The cultivated land-use transition (CLUT) is the morphological result of changes in the cultivated land-use mode over time, and the result of the interaction and mutual restriction of the human land system. This paper applies a “spatial–functional” integrated framework to understand the structure and functioning of CLUTs, and quantitatively evaluates and visualizes CLUTs in the major grain-producing area in southern China. The results show that (1) the comprehensive CLUT index in the middle and lower reaches of the Yangtze River changed from 0.0480 to 0.0711 from 2001 to 2019 and indicated significant differences in the transition index between different regions. (2) The CLUT identified a positive aggregation effect under a 5% significance during the period, and the agglomeration degree of the spatial and functional transitions strengthened, which increased from 0.3776 to 0.4673 and from 0.2127 to 0.2952, respectively. (3) The gravity center of the CLUT demonstrated a pattern of migration from the southwest to the northeast, and the migration speed of the gravity center decreased from 2.9401 km/year to 1.2370 km/year. The migration direction of the gravity center for the spatial transition is opposite to the functional transition, and the migration speed of the gravity center for the spatial and functional transitions decreased from 8.3573 km/year to 1.0814 km/year, and from 3.2398 km/year to 1.0254 km/year, respectively. To address this transition, policymakers should formulate differentiated policies to promote the sustainable use of cultivated land through the spatial and functional transition of major grain-producing areas.

Suggested Citation

  • Tiangui Lv & Shufei Fu & Xinmin Zhang & Guangdong Wu & Han Hu & Junfeng Tian, 2022. "Assessing Cultivated Land–Use Transition in the Major Grain-Producing Areas of China Based on an Integrated Framework," Land, MDPI, vol. 11(10), pages 1-23, September.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:10:p:1622-:d:921919
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/10/1622/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/10/1622/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Uisso, Amani Michael & Tanrıvermiş, Harun, 2021. "Driving factors and assessment of changes in the use of arable land in Tanzania," Land Use Policy, Elsevier, vol. 104(C).
    2. Hualou Long & Yingnan Zhang & Li Ma & Shuangshuang Tu, 2021. "Land Use Transitions: Progress, Challenges and Prospects," Land, MDPI, vol. 10(9), pages 1-20, August.
    3. Swinton, Scott M. & Lupi, Frank & Robertson, G. Philip & Hamilton, Stephen K., 2007. "Ecosystem services and agriculture: Cultivating agricultural ecosystems for diverse benefits," Ecological Economics, Elsevier, vol. 64(2), pages 245-252, December.
    4. Shandong Niu & Xiao Lyu & Guozheng Gu, 2022. "A New Framework of Green Transition of Cultivated Land-Use for the Coordination among the Water-Land-Food-Carbon Nexus in China," Land, MDPI, vol. 11(6), pages 1-25, June.
    5. Bertoni, Danilo & Aletti, Giacomo & Ferrandi, Giulia & Micheletti, Alessandra & Cavicchioli, Daniele & Pretolani, Roberto, 2018. "Farmland Use Transitions After the CAP Greening: a Preliminary Analysis Using Markov Chains Approach," Land Use Policy, Elsevier, vol. 79(C), pages 789-800.
    6. Xiao Lu & Yi Qu & Piling Sun & Wei Yu & Wenlong Peng, 2020. "Green Transition of Cultivated Land Use in the Yellow River Basin: A Perspective of Green Utilization Efficiency Evaluation," Land, MDPI, vol. 9(12), pages 1-22, November.
    7. Tian, Junfeng & Wang, Binyan & Zhang, Chuanrong & Li, Weidong & Wang, Shijun, 2020. "Mechanism of regional land use transition in underdeveloped areas of China: A case study of northeast China," Land Use Policy, Elsevier, vol. 94(C).
    8. Lu, Xiao & Shi, Yangyang & Chen, Changling & Yu, Miao, 2017. "Monitoring cropland transition and its impact on ecosystem services value in developed regions of China: A case study of Jiangsu Province," Land Use Policy, Elsevier, vol. 69(C), pages 25-40.
    9. Xu, Zhigang & Xu, Jintao & Deng, Xiangzheng & Huang, Jikun & Uchida, Emi & Rozelle, Scott, 2006. "Grain for Green versus Grain: Conflict between Food Security and Conservation Set-Aside in China," World Development, Elsevier, vol. 34(1), pages 130-148, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinyao Li & Lingzhi Wang & Bryan Pijanowski & Lingpeng Pan & Hichem Omrani & Anqi Liang & Yi Qu, 2022. "The Spatio-Temporal Pattern and Transition Mode of Recessive Cultivated Land Use Morphology in the Huaibei Region of the Jiangsu Province," Land, MDPI, vol. 11(11), pages 1-16, November.
    2. Xiao Lyu & Yanan Wang & Yuntai Zhao & Shandong Niu, 2022. "Spatio‐temporal pattern and mechanism of coordinated development of “population–land–industry–money” in rural areas of three provinces in Northeast China," Growth and Change, Wiley Blackwell, vol. 53(3), pages 1333-1361, September.
    3. Hualou Long & Yingnan Zhang & Li Ma & Shuangshuang Tu, 2021. "Land Use Transitions: Progress, Challenges and Prospects," Land, MDPI, vol. 10(9), pages 1-20, August.
    4. Tao, Jieyi & Lu, Yuqi & Ge, Dazhuan & Dong, Ping & Gong, Xiao & Ma, Xiaobin, 2022. "The spatial pattern of agricultural ecosystem services from the production-living-ecology perspective: A case study of the Huaihai Economic Zone, China," Land Use Policy, Elsevier, vol. 122(C).
    5. Wencun Zhou & Zhengjia Liu & Sisi Wang, 2023. "Spatiotemporal Dynamics of the Cropland Area and Its Response to Increasing Regional Extreme Weather Events in the Farming-Pastoral Ecotone of Northern China during 1992–2020," Sustainability, MDPI, vol. 15(18), pages 1-28, September.
    6. Zhangxuan Qin & Xiaolin Liu & Xiaoyan Lu & Mengfei Li & Fei Li, 2022. "Grain Production Space Reconstruction and Its Influencing Factors in the Loess Plateau," IJERPH, MDPI, vol. 19(10), pages 1-18, May.
    7. Dang, Yuxuan & Zhao, Zhenting & Kong, Xiangbin & Lei, Ming & Liao, Yubo & Xie, Zhen & Song, Wei, 2023. "Discerning the process of cultivated land governance transition in China since the reform and opening-up-- Based on the multiple streams framework," Land Use Policy, Elsevier, vol. 133(C).
    8. Xing Niu & Fenghua Liao & Ziming Liu & Guancen Wu, 2022. "Spatial–Temporal Characteristics and Driving Mechanisms of Land–Use Transition from the Perspective of Urban–Rural Transformation Development: A Case Study of the Yangtze River Delta," Land, MDPI, vol. 11(5), pages 1-20, April.
    9. Lingzhi Wang & Anqi Liang & Xinyao Li & Chengge Jiang & Junjie Wu & Hichem Omrani, 2023. "Understanding Recessive Transition of Cultivated Land Use in Jilin Province, China (1990–2020): From Perspective of Productive-Living-Ecological Functions," Land, MDPI, vol. 12(9), pages 1-24, September.
    10. Shandong Niu & Xiao Lyu & Guozheng Gu, 2022. "What Is the Operation Logic of Cultivated Land Protection Policies in China? A Grounded Theory Analysis," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    11. Hualou Long & Xiangbin Kong & Shougeng Hu & Yurui Li, 2021. "Land Use Transitions under Rapid Urbanization: A Perspective from Developing China," Land, MDPI, vol. 10(9), pages 1-9, September.
    12. Wenxing Du & Yuxia Wang & Dingyi Qian & Xiao Lyu, 2022. "Process and Eco-Environment Impact of Land Use Function Transition under the Perspective of “Production-Living-Ecological” Spaces—Case of Haikou City, China," IJERPH, MDPI, vol. 19(24), pages 1-21, December.
    13. Dong Han & Jiajun Qiao & Qiankun Zhu & Jie Xiao & Yuling Ma, 2022. "Endogenous Driving Forces in Ecology-Production-Living Space Changes at Micro-Scale: A Mountain Town Example in Inland China," Land, MDPI, vol. 11(12), pages 1-30, December.
    14. Feifei Jiang & Fu Chen & Yan Sun & Ziyi Hua & Xinhua Zhu & Jing Ma, 2023. "Spatiotemporal Pattern and Driving Mechanism of Cultivated Land Use Transition in China," Land, MDPI, vol. 12(10), pages 1-20, September.
    15. Bangrong Shu & Yi Qu, 2022. "Impact Mechanism of the Three Pilot Reforms of the Rural Land System on Rural Residential Land Use Transition: A Regime Shifts Perspective," Land, MDPI, vol. 11(12), pages 1-17, December.
    16. Yanbo Qu & Xiaozhen Dong & Lingyun Zhan & Hongyun Si & Zongli Ping & Weiya Zhu, 2021. "Scale Transition and Structure–Function Synergy Differentiation of Rural Residential Land: A Dimensionality Reduction Transmission Process from Macro to Micro Scale," Land, MDPI, vol. 10(6), pages 1-26, June.
    17. Yuanyuan Yang & Wenkai Bao & Yuheng Li & Yongsheng Wang & Zongfeng Chen, 2020. "Land Use Transition and Its Eco-Environmental Effects in the Beijing–Tianjin–Hebei Urban Agglomeration: A Production–Living–Ecological Perspective," Land, MDPI, vol. 9(9), pages 1-24, August.
    18. Vermunt, D.A. & Wojtynia, N. & Hekkert, M.P. & Van Dijk, J. & Verburg, R. & Verweij, P.A. & Wassen, M. & Runhaar, H., 2022. "Five mechanisms blocking the transition towards ‘nature-inclusive’ agriculture: A systemic analysis of Dutch dairy farming," Agricultural Systems, Elsevier, vol. 195(C).
    19. Yajing Shao & Xuefeng Yuan & Chaoqun Ma & Ruifang Ma & Zhaoxia Ren, 2020. "Quantifying the Spatial Association between Land Use Change and Ecosystem Services Value: A Case Study in Xi’an, China," Sustainability, MDPI, vol. 12(11), pages 1-20, May.
    20. Valbuena, Diego & Tui, Sabine Homann-Kee & Erenstein, Olaf & Teufel, Nils & Duncan, Alan & Abdoulaye, Tahirou & Swain, Braja & Mekonnen, Kindu & Germaine, Ibro & Gérard, Bruno, 2015. "Identifying determinants, pressures and trade-offs of crop residue use in mixed smallholder farms in Sub-Saharan Africa and South Asia," Agricultural Systems, Elsevier, vol. 134(C), pages 107-118.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:10:p:1622-:d:921919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.