IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i5p3039-d764600.html
   My bibliography  Save this article

The Energy Transition between Desideratum and Challenge: Are Cogeneration and Trigeneration the Best Solution?

Author

Listed:
  • Adrian Neacșa

    (Department of Mechanical Engineering, Petroleum-Gas University of Ploiesti, 100680 Ploiești, Romania)

  • Mirela Panait

    (Department of Cybernetics, Economic Informatics, Finance and Accounting, Petroleum-Gas University of Ploiesti, 100680 Ploiești, Romania
    Institute of National Economy, 050771 Bucharest, Romania)

  • Jianu Daniel Mureșan

    (Department of Business Administration, Petroleum-Gas University of Ploiesti, 100680 Ploiești, Romania)

  • Marian Catalin Voica

    (Department of Cybernetics, Economic Informatics, Finance and Accounting, Petroleum-Gas University of Ploiesti, 100680 Ploiești, Romania)

  • Otilia Manta

    (Financial and Monetary Research Center “Victor Slavescu”, Romanian Academy, 050711 Bucharest, Romania
    Department of Research, Romanian-American University, 012101 Bucharest, Romania)

Abstract

Climate change has brought to the attention of politicians, researchers, and other stakeholders the need to protect the environment. The concerns at the international level are more and more intense, and the solutions found are multiple. One of the directions to follow is a new energy transition, which involves the use of renewable energy, but also techniques of cogeneration and trigeneration. This study presents the main research on increasing energy efficiency in the use of a primary energy source and the impact on the environment. Compared to the classical methods of obtaining heat and electricity from burning fossil fuels through separate technologies, the study brings to the fore two methods (cogeneration and trigeneration) that have much higher yields by obtaining two or even three forms of energy from the use of a single source of combustion. The impact on the environment is also significantly reduced by eliminating additional sources of pollution (reducing greenhouse gas emissions). Taking into account the evolutions of the energy market during this period, this article aims to analyze, from the point of view of the two most important influencing factors, the economic efficiency of processes and the reduction of greenhouse gas emissions by overlapping their effect, in case of the use of modern technologies (cogeneration and trigeneration), for the combined production of various forms of energy.

Suggested Citation

  • Adrian Neacșa & Mirela Panait & Jianu Daniel Mureșan & Marian Catalin Voica & Otilia Manta, 2022. "The Energy Transition between Desideratum and Challenge: Are Cogeneration and Trigeneration the Best Solution?," IJERPH, MDPI, vol. 19(5), pages 1-22, March.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:5:p:3039-:d:764600
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/5/3039/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/5/3039/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Laurikka, Harri & Koljonen, Tiina, 2006. "Emissions trading and investment decisions in the power sector--a case study in Finland," Energy Policy, Elsevier, vol. 34(9), pages 1063-1074, June.
    2. Georgios Tsantopoulos & Evangelia Karasmanaki, 2021. "Energy Transition and Climate Change in Decision-Making Processes," Sustainability, MDPI, vol. 13(23), pages 1-3, December.
    3. Rıdvan Karacan & Shahriyar Mukhtarov & İsmail Barış & Aykut İşleyen & Mehmet Emin Yardımcı, 2021. "The Impact of Oil Price on Transition toward Renewable Energy Consumption? Evidence from Russia," Energies, MDPI, vol. 14(10), pages 1-14, May.
    4. Kern, Florian & Smith, Adrian, 2008. "Restructuring energy systems for sustainability? Energy transition policy in the Netherlands," Energy Policy, Elsevier, vol. 36(11), pages 4093-4103, November.
    5. Verbong, Geert & Geels, Frank, 2007. "The ongoing energy transition: Lessons from a socio-technical, multi-level analysis of the Dutch electricity system (1960-2004)," Energy Policy, Elsevier, vol. 35(2), pages 1025-1037, February.
    6. Pachauri, Shonali & Jiang, Leiwen, 2008. "The household energy transition in India and China," Energy Policy, Elsevier, vol. 36(11), pages 4022-4035, November.
    7. Adrian Neacsa & Mirela Panait & Jianu Daniel Muresan & Marian Catalin Voica, 2020. "Energy Poverty in European Union: Assessment Difficulties, Effects on the Quality of Life, Mitigation Measures. Some Evidences from Romania," Sustainability, MDPI, vol. 12(10), pages 1-28, May.
    8. Jacobson, Mark Z. & Delucchi, Mark A. & Cameron, Mary A. & Mathiesen, Brian V., 2018. "Matching demand with supply at low cost in 139 countries among 20 world regions with 100% intermittent wind, water, and sunlight (WWS) for all purposes," Renewable Energy, Elsevier, vol. 123(C), pages 236-248.
    9. Umer Shahzad & Magdalena Radulescu & Syed Rahim & Cem Isik & Zahid Yousaf & Stefan Alexandru Ionescu, 2021. "Do Environment-Related Policy Instruments and Technologies Facilitate Renewable Energy Generation? Exploring the Contextual Evidence from Developed Economies," Energies, MDPI, vol. 14(3), pages 1-25, January.
    10. Mahmut Zortuk & Sinan Çeken, 2016. "Testing Environmental Kuznets Curve in the Selected Transition Economies with Panel Smooth Transition Regression Analysis," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 18(43), pages 537-537, August.
    11. Solomon, Barry D. & Krishna, Karthik, 2011. "The coming sustainable energy transition: History, strategies, and outlook," Energy Policy, Elsevier, vol. 39(11), pages 7422-7431.
    12. Erik Laes & Leen Gorissen & Frank Nevens, 2014. "A Comparison of Energy Transition Governance in Germany, The Netherlands and the United Kingdom," Sustainability, MDPI, vol. 6(3), pages 1-24, February.
    13. Chicco, Gianfranco & Mancarella, Pierluigi, 2008. "Assessment of the greenhouse gas emissions from cogeneration and trigeneration systems. Part I: Models and indicators," Energy, Elsevier, vol. 33(3), pages 410-417.
    14. Nieto, Jaime & Carpintero, Óscar & Lobejón, Luis Fernando & Miguel, Luis Javier, 2020. "An ecological macroeconomics model: The energy transition in the EU," Energy Policy, Elsevier, vol. 145(C).
    15. Seoyong Kim & Jae Eun Lee & Donggeun Kim, 2019. "Searching for the Next New Energy in Energy Transition: Comparing the Impacts of Economic Incentives on Local Acceptance of Fossil Fuels, Renewable, and Nuclear Energies," Sustainability, MDPI, vol. 11(7), pages 1-32, April.
    16. Renée M. De Waal & Sven Stremke, 2014. "Energy Transition: Missed Opportunities and Emerging Challenges for Landscape Planning and Designing," Sustainability, MDPI, vol. 6(7), pages 1-30, July.
    17. Gheorghe ZAMAN & Giani GRÄ‚DINARU & Iulia NEAGOE, 2020. "The Impact of the Covid-19 Crisis on the Manifestation of the Rebound Effect in Energy Consumption," Romanian Journal of Economics, Institute of National Economy, vol. 50(1(59)), pages 29-46, June.
    18. Haider Mahmood & Nabil Maalel & Muhammad Shahid Hassan, 2021. "Probing the Energy-Environmental Kuznets Curve Hypothesis in Oil and Natural Gas Consumption Models Considering Urbanization and Financial Development in Middle East Countries," Energies, MDPI, vol. 14(11), pages 1-24, May.
    19. Cardona, E. & Piacentino, A., 2005. "Cogeneration: a regulatory framework toward growth," Energy Policy, Elsevier, vol. 33(16), pages 2100-2111, November.
    20. Mancarella, Pierluigi & Chicco, Gianfranco, 2008. "Assessment of the greenhouse gas emissions from cogeneration and trigeneration systems. Part II: Analysis techniques and application cases," Energy, Elsevier, vol. 33(3), pages 418-430.
    21. Strunz, Sebastian, 2014. "The German energy transition as a regime shift," Ecological Economics, Elsevier, vol. 100(C), pages 150-158.
    22. Daniel Armeanu & Georgeta Vintilă & Jean Vasile Andrei & Ştefan Cristian Gherghina & Mihaela Cristina Drăgoi & Cristian Teodor, 2018. "Exploring the link between environmental pollution and economic growth in EU-28 countries: Is there an environmental Kuznets curve?," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-28, May.
    23. Goda Perlaviciute & Linda Steg & Nadja Contzen & Sabine Roeser & Nicole Huijts, 2018. "Emotional Responses to Energy Projects: Insights for Responsible Decision Making in a Sustainable Energy Transition," Sustainability, MDPI, vol. 10(7), pages 1-12, July.
    24. Popescu, Gheorghe H. & Mieila, Mihai & Nica, Elvira & Andrei, Jean Vasile, 2018. "The emergence of the effects and determinants of the energy paradigm changes on European Union economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 768-774.
    25. Bridge, Gavin & Bouzarovski, Stefan & Bradshaw, Michael & Eyre, Nick, 2013. "Geographies of energy transition: Space, place and the low-carbon economy," Energy Policy, Elsevier, vol. 53(C), pages 331-340.
    26. Abbasi, Kashif Raza & Shahbaz, Muhammad & Jiao, Zhilun & Tufail, Muhammad, 2021. "How energy consumption, industrial growth, urbanization, and CO2 emissions affect economic growth in Pakistan? A novel dynamic ARDL simulations approach," Energy, Elsevier, vol. 221(C).
    27. Armeanu, Daniel Stefan & Joldes, Camelia Catalina & Gherghina, Stefan Cristian & Andrei, Jean Vasile, 2021. "Understanding the multidimensional linkages among renewable energy, pollution, economic growth and urbanization in contemporary economies: Quantitative assessments across different income countries’ g," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shahzad, Umer & Ghaemi Asl, Mahdi & Panait, Mirela & Sarker, Tapan & Apostu, Simona Andreea, 2023. "Emerging interaction of artificial intelligence with basic materials and oil & gas companies: A comparative look at the Islamic vs. conventional markets," Resources Policy, Elsevier, vol. 80(C).
    2. Adrian Neacsa & Cristian Nicolae Eparu & Cașen Panaitescu & Doru Bogdan Stoica & Bogdan Ionete & Alina Prundurel & Sorin Gal, 2023. "Hydrogen–Natural Gas Mix—A Viable Perspective for Environment and Society," Energies, MDPI, vol. 16(15), pages 1-38, August.
    3. Adrian Neacsa & Jianu Daniel Muresan & Marian Catalin Voica & Otilia Manta & Mihail Vincentiu Ivan, 2023. "Oil Price—A Sensor for the Performance of Romanian Oil Manufacturing Companies," Energies, MDPI, vol. 16(5), pages 1-18, February.
    4. Cristian Nicolae Eparu & Adrian Neacsa & Doru Bogdan Stoica, 2022. "Gas Losses in the Distribution Networks: An Interdisciplinary Analysis," Energies, MDPI, vol. 16(1), pages 1-23, December.
    5. Xin Zhao & Yanqi Chen & Gang Xu & Heng Chen, 2022. "Economic Assessment of Operation Strategies on Park-Level Integrated Energy System Coupled with Biogas: A Case Study in a Sewage Treatment Plant," Energies, MDPI, vol. 16(1), pages 1-21, December.
    6. Adrian Neacsa & Cristian Nicolae Eparu & Doru Bogdan Stoica, 2022. "Hydrogen–Natural Gas Blending in Distribution Systems—An Energy, Economic, and Environmental Assessment," Energies, MDPI, vol. 15(17), pages 1-26, August.
    7. Simona Andreea Apostu & Iza Gigauri & Mirela Panait & Pedro A. Martín-Cervantes, 2023. "Is Europe on the Way to Sustainable Development? Compatibility of Green Environment, Economic Growth, and Circular Economy Issues," IJERPH, MDPI, vol. 20(2), pages 1-17, January.
    8. Shuguang Liu & Jiayi Wang & Yin Long, 2023. "Research into the Spatiotemporal Characteristics and Influencing Factors of Technological Innovation in China’s Natural Gas Industry from the Perspective of Energy Transition," Sustainability, MDPI, vol. 15(9), pages 1-34, April.
    9. Diana Joița & Mirela Panait & Carmen-Elena Dobrotă & Alin Diniță & Adrian Neacșa & Laura Elly Naghi, 2023. "The European Dilemma—Energy Security or Green Transition," Energies, MDPI, vol. 16(9), pages 1-16, April.
    10. Catalin Popescu & Simona Andreea Apostu & Irina Gabriela Rădulescu & Jianu Daniel Mureșan & Alina Gabriela Brezoi, 2024. "Energizing the Now: Navigating the Critical Landscape of Today’s Energy Challenges—An In-Depth Review," Energies, MDPI, vol. 17(3), pages 1-26, January.
    11. Constantin Anghelache & Mădălina Gabriela Anghel & Ștefan Virgil Iacob & Ion Pârțachi & Irina Gabriela Rădulescu & Alina Gabriela Brezoi, 2023. "Analysis of the Situation of Renewable and Non-Renewable Energy Consumption in the European Union," Energies, MDPI, vol. 16(3), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Trung Thanh & Nguyen, Thanh-Tung & Hoang, Viet-Ngu & Wilson, Clevo & Managi, Shunsuke, 2019. "Energy transition, poverty and inequality in Vietnam," Energy Policy, Elsevier, vol. 132(C), pages 536-548.
    2. Nguyen, Trung Thanh & Nguyen, Thanh-Tung & Hoang, Viet-Ngu & Wilson, Clevo, 2019. "Energy transition, poverty and inequality: panel evidence from Vietnam," MPRA Paper 107182, University Library of Munich, Germany, revised 10 May 2019.
    3. Panait, Mirela & Apostu, Simona Andreea & Vasile, Valentina & Vasile, Razvan, 2022. "Is energy efficiency a robust driver for the new normal development model? A Granger causality analysis," Energy Policy, Elsevier, vol. 169(C).
    4. Maswabi, Mareledi Gina & Chun, Jungwoo & Chung, Suh-Yong, 2021. "Barriers to energy transition: A case of Botswana," Energy Policy, Elsevier, vol. 158(C).
    5. Barton, John & Davies, Lloyd & Dooley, Ben & Foxon, Timothy J. & Galloway, Stuart & Hammond, Geoffrey P. & O’Grady, Áine & Robertson, Elizabeth & Thomson, Murray, 2018. "Transition pathways for a UK low-carbon electricity system: Comparing scenarios and technology implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2779-2790.
    6. Caresana, Flavio & Brandoni, Caterina & Feliciotti, Petro & Bartolini, Carlo Maria, 2011. "Energy and economic analysis of an ICE-based variable speed-operated micro-cogenerator," Applied Energy, Elsevier, vol. 88(3), pages 659-671, March.
    7. Jonathan Doh & Pawan Budhwar & Geoffrey Wood, 2021. "Long-term energy transitions and international business: Concepts, theory, methods, and a research agenda," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 52(5), pages 951-970, July.
    8. Kivimaa, Paula & Kern, Florian, 2016. "Creative destruction or mere niche support? Innovation policy mixes for sustainability transitions," Research Policy, Elsevier, vol. 45(1), pages 205-217.
    9. Basil Bornemann & Stephan Schmidt & Susanne Schubert, 2016. "Governing Uncertainties in Sustainable Energy Transitions—Insights from Local Heat Supply in Switzerland," Urban Planning, Cogitatio Press, vol. 1(3), pages 38-54.
    10. Yuan, Jiahai & Xu, Yan & Hu, Zhen & Yu, Zhongfu & Liu, Jiangyan & Hu, Zhaoguang & Xu, Ming, 2012. "Managing electric power system transition in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5660-5677.
    11. Frangopoulos, Christos A., 2012. "A method to determine the power to heat ratio, the cogenerated electricity and the primary energy savings of cogeneration systems after the European Directive," Energy, Elsevier, vol. 45(1), pages 52-61.
    12. Jochen Markard & Marco Suter & Karin Ingold, 2015. "Socio-technical transitions and policy change - Advocacy coalitions in Swiss energy policy," SPRU Working Paper Series 2015-13, SPRU - Science Policy Research Unit, University of Sussex Business School.
    13. Mancarella, Pierluigi & Chicco, Gianfranco, 2009. "Global and local emission impact assessment of distributed cogeneration systems with partial-load models," Applied Energy, Elsevier, vol. 86(10), pages 2096-2106, October.
    14. Carvalho, Monica & Serra, Luis Maria & Lozano, Miguel Angel, 2011. "Optimal synthesis of trigeneration systems subject to environmental constraints," Energy, Elsevier, vol. 36(6), pages 3779-3790.
    15. Constantin Anghelache & Mădălina Gabriela Anghel & Ștefan Virgil Iacob & Ion Pârțachi & Irina Gabriela Rădulescu & Alina Gabriela Brezoi, 2023. "Analysis of the Situation of Renewable and Non-Renewable Energy Consumption in the European Union," Energies, MDPI, vol. 16(3), pages 1-15, January.
    16. Claudia R. Binder & Susan Mühlemeier & Romano Wyss, 2017. "An Indicator-Based Approach for Analyzing the Resilience of Transitions for Energy Regions. Part I: Theoretical and Conceptual Considerations," Energies, MDPI, vol. 10(1), pages 1-18, January.
    17. Jenkins, Kirsten & Sovacool, Benjamin K. & McCauley, Darren, 2018. "Humanizing sociotechnical transitions through energy justice: An ethical framework for global transformative change," Energy Policy, Elsevier, vol. 117(C), pages 66-74.
    18. Karoline S. Rogge & Elisabeth Dütschke, 2017. "Exploring Perceptions of the Credibility of Policy Mixes: The Case of German Manufacturers of Renewable Power Generation Technologies," SPRU Working Paper Series 2017-23, SPRU - Science Policy Research Unit, University of Sussex Business School.
    19. Salta, Myrsine & Polatidis, Heracles & Haralambopoulos, Dias, 2011. "Industrial combined heat and power (CHP) planning: Development of a methodology and application in Greece," Applied Energy, Elsevier, vol. 88(5), pages 1519-1531, May.
    20. Bradshaw, Amanda & de Martino Jannuzzi, Gilberto, 2019. "Governing energy transitions and regional economic development: Evidence from three Brazilian states," Energy Policy, Elsevier, vol. 126(C), pages 1-11.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:5:p:3039-:d:764600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.