IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i15p9339-d876304.html
   My bibliography  Save this article

Can Agricultural Productive Services Promote Agricultural Environmental Efficiency in China?

Author

Listed:
  • Yingyu Zhu

    (College of Economics and Management, Shenyang Agricultural University, Shenyang 110866, China)

  • Junmiao Deng

    (School of Economics and Trade, Henan University of Technology, Zhengzhou 450001, China)

  • Menghan Wang

    (College of Economics and Management, Shenyang Agricultural University, Shenyang 110866, China)

  • Yuanchang Tan

    (College of Economics and Management, Shenyang Agricultural University, Shenyang 110866, China)

  • Wei Yao

    (College of Economics and Management, Shenyang Agricultural University, Shenyang 110866, China)

  • Yan Zhang

    (College of Economics and Management, Shenyang Agricultural University, Shenyang 110866, China
    Institute of Higher Education, Shenyang Agricultural University, Shenyang 110866, China)

Abstract

Agricultural productive services are important paths to realize the development of green agriculture, while the effect of agricultural productive services on the agricultural environment and its influencing mechanism are not yet clear. With the panel data of agricultural production in China from 2004 to 2019, by using multi-output stochastic frontier analysis with an output-oriented distance function, this study investigates agricultural environmental efficiency based on net carbon sinks. Then, this study explores the effect of agricultural productive services on agricultural environmental efficiency and its mechanisms by adopting ordinary least squares regression with fixed-effect panel model, causal steps approach, and spatial econometric method. The main findings are as follows: Firstly, agricultural productive services enhance agricultural productivity and agricultural environment by optimizing inputs and increasing outputs, and thus improve agricultural environmental efficiency. This result holds steadily after using instrumental variables to deal with endogeneity, changing the measurement of the dependent and independent variables, and subdividing the sample. Secondly, the pathways of agricultural productive services affecting agricultural environmental efficiency are mainly reflected in technology progress, planting structure adjustment, factor allocation optimization, and spatial spillover. Thirdly, due to the law of diminishing marginal returns, the impact of agricultural productive services on agricultural environmental efficiency is more significant when the level of agricultural productive services is relatively low. To improve agricultural environmental efficiency, we suggest implementing different productive service strategies in different regions, strengthening information integration, and improving infrastructure.

Suggested Citation

  • Yingyu Zhu & Junmiao Deng & Menghan Wang & Yuanchang Tan & Wei Yao & Yan Zhang, 2022. "Can Agricultural Productive Services Promote Agricultural Environmental Efficiency in China?," IJERPH, MDPI, vol. 19(15), pages 1-18, July.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:15:p:9339-:d:876304
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/15/9339/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/15/9339/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sheng, Yu & Chancellor, Will, 2019. "Exploring the relationship between farm size and productivity: Evidence from the Australian grains industry," Food Policy, Elsevier, vol. 84(C), pages 196-204.
    2. Wang, Xiang & Shao, Shuai & Li, Ling, 2019. "Agricultural inputs, urbanization, and urban-rural income disparity: Evidence from China," China Economic Review, Elsevier, vol. 55(C), pages 67-84.
    3. Liu, Yansui & Zou, Lilin & Wang, Yongsheng, 2020. "Spatial-temporal characteristics and influencing factors of agricultural eco-efficiency in China in recent 40 years," Land Use Policy, Elsevier, vol. 97(C).
    4. Zhang, Xiaobo & Yang, Jin & Reardon, Thomas, 2020. "Mechanization outsourcing clusters and division of labor in Chinese agriculture," IFPRI book chapters, in: An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia?, chapter 2, pages 71-96, International Food Policy Research Institute (IFPRI).
    5. Qian, Long & Lu, Hua & Gao, Qiang & Lu, Hualiang, 2022. "Household-owned farm machinery vs. outsourced machinery services: The impact of agricultural mechanization on the land leasing behavior of relatively large-scale farmers in China," Land Use Policy, Elsevier, vol. 115(C).
    6. Brian Sims & Josef Kienzle, 2017. "Sustainable Agricultural Mechanization for Smallholders: What Is It and How Can We Implement It?," Agriculture, MDPI, vol. 7(6), pages 1-21, June.
    7. Zhihao Wu & Jingqi Dang & Yipu Pang & Wei Xu, 2021. "Threshold effect or spatial spillover? The impact of agricultural mechanization on grain production," Journal of Applied Economics, Taylor & Francis Journals, vol. 24(1), pages 478-503, January.
    8. Dingqiang Sun & Michael Rickaille & Zhigang Xu, 2018. "Determinants and impacts of outsourcing pest and disease management," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 10(3), pages 443-461, August.
    9. Xin Deng & Dingde Xu & Miao Zeng & Yanbin Qi, 2020. "Does outsourcing affect agricultural productivity of farmer households? Evidence from China," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 12(4), pages 673-688, August.
    10. Bravo-Ureta, Boris E. & Higgins, Daniel & Arslan, Aslihan, 2020. "Irrigation infrastructure and farm productivity in the Philippines: A stochastic Meta-Frontier analysis," World Development, Elsevier, vol. 135(C).
    11. Yingyu Zhu & Yan Zhang & Huilan Piao, 2022. "Does Agricultural Mechanization Improve the Green Total Factor Productivity of China’s Planting Industry?," Energies, MDPI, vol. 15(3), pages 1-20, January.
    12. Martey, Edward & Etwire, Prince M. & Kuwornu, John K.M., 2020. "Economic impacts of smallholder farmers’ adoption of drought-tolerant maize varieties," Land Use Policy, Elsevier, vol. 94(C).
    13. Chuanhe Xiong & Shuang Chen & Liting Xu, 2020. "Driving factors analysis of agricultural carbon emissions based on extended STIRPAT model of Jiangsu Province, China," Growth and Change, Wiley Blackwell, vol. 51(3), pages 1401-1416, September.
    14. Qiu, Tongwei & Shi, Xinjie & He, Qinying & Luo, Biliang, 2021. "The paradox of developing agricultural mechanization services in China: Supporting or kicking out smallholder farmers?," China Economic Review, Elsevier, vol. 69(C).
    15. Baiyegunhi, L.J.S. & Majokweni, Z.P. & Ferrer, S.R.D., 2019. "Impact of outsourced agricultural extension program on smallholder farmers’ net farm income in Msinga, KwaZulu-Natal, South Africa," Technology in Society, Elsevier, vol. 57(C), pages 1-7.
    16. Gong, Binlei, 2018. "Agricultural reforms and production in China: Changes in provincial production function and productivity in 1978–2015," Journal of Development Economics, Elsevier, vol. 132(C), pages 18-31.
    17. Belton, Ben & Win, Myat Thida & Zhang, Xiaobo & Filipski, Mateusz, 2021. "The rapid rise of agricultural mechanization in Myanmar," Food Policy, Elsevier, vol. 101(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiaoni Yang & Ningning Zhang & Qianwen Lu & Xinru Han, 2023. "Family Net Income, Input Factor Prices and Agriculture Services Selection Behavior of Maize Farmers," Agriculture, MDPI, vol. 14(1), pages 1-15, December.
    2. Xuelan Li & Rui Guan, 2023. "How Does Agricultural Mechanization Service Affect Agricultural Green Transformation in China?," IJERPH, MDPI, vol. 20(2), pages 1-23, January.
    3. Shouhong Xie & Jizhou Zhang & Xiaojing Li & Zhe Chen & Xiaoning Zhang & Xianli Xia, 2023. "Impact of Farmer Participation in Production Chain Outsourcing Services on Agricultural Output Level and Output Risk: Evidence from the Guanzhong Plain, China," Agriculture, MDPI, vol. 13(12), pages 1-18, December.
    4. Yawen Liang & Yue Wang & Yao Sun & Junhu Ruan, 2024. "Study on the Influence of Agricultural Scale Management Mode on Production Efficiency Based on Meta-Analysis," Land, MDPI, vol. 13(7), pages 1-20, July.
    5. Ziming Bai & Tianyi Wang & Jiabin Xu & Cuixia Li, 2023. "Can Agricultural Productive Services Inhibit Carbon Emissions? Evidence from China," Land, MDPI, vol. 12(7), pages 1-20, June.
    6. Shoumin Yue & Ying Xue & Jie Lyu & Kangkang Wang, 2023. "The Effect of Information Acquisition Ability on Farmers’ Agricultural Productive Service Behavior: An Empirical Analysis of Corn Farmers in Northeast China," Agriculture, MDPI, vol. 13(3), pages 1-26, February.
    7. Juan Ai & Lun Hu & Shuhua Xia & Hongling Xiang & Zhaojiu Chen, 2023. "Analysis of Factors Influencing the Adoption Behavior of Agricultural Productive Services Based on Logistic—ISM Model: A Case Study of Rice Farmers in Jiangxi Province, China," Agriculture, MDPI, vol. 13(1), pages 1-16, January.
    8. Beihe Wu & Yan Guo & Zhaojiu Chen & Liguo Wang, 2024. "Do Agricultural Productive Services Impact the Carbon Emissions of the Planting Industry in China: Promotion or Inhibition?," Sustainability, MDPI, vol. 16(16), pages 1-20, August.
    9. Xiaoxuan Chen & Tongshan Liu, 2023. "Can Agricultural Socialized Services Promote the Reduction in Chemical Fertilizer? Analysis Based on the Moderating Effect of Farm Size," IJERPH, MDPI, vol. 20(3), pages 1-16, January.
    10. Zike Qi, 2024. "A Simulation of the Necessary Total Factor Productivity Growth and Its Feasible Dual Circulation Source Pathways to Achieve China’s 2035—Economic Goals: A Dynamic Computational General Equilibrium Stu," Sustainability, MDPI, vol. 16(18), pages 1-41, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng Qu & Kai Zhao & Renhui Zhang & Yuan Gao & Jing Wang, 2022. "Divergence between Willingness and Behavior of Farmers to Purchase Socialized Agricultural Services: From a Heterogeneity Perspective of Land Scale," Land, MDPI, vol. 11(8), pages 1-21, July.
    2. Xuelan Li & Rui Guan, 2023. "How Does Agricultural Mechanization Service Affect Agricultural Green Transformation in China?," IJERPH, MDPI, vol. 20(2), pages 1-23, January.
    3. Liu, Yan & Heerink, Nico & Li, Fan & Shi, Xiaoping, 2022. "Do agricultural machinery services promote village farmland rental markets? Theory and evidence from a case study in the North China plain," Land Use Policy, Elsevier, vol. 122(C).
    4. Juan Ai & Lun Hu & Shuhua Xia & Hongling Xiang & Zhaojiu Chen, 2023. "Analysis of Factors Influencing the Adoption Behavior of Agricultural Productive Services Based on Logistic—ISM Model: A Case Study of Rice Farmers in Jiangxi Province, China," Agriculture, MDPI, vol. 13(1), pages 1-16, January.
    5. Ruining Li & Yanli Yu, 2022. "Impacts of Green Production Behaviors on the Income Effect of Rice Farmers from the Perspective of Outsourcing Services: Evidence from the Rice Region in Northwest China," Agriculture, MDPI, vol. 12(10), pages 1-27, October.
    6. Xiang Li & Xiaoqin Guo, 2023. "Can Policy Promote Agricultural Service Outsourcing? Quasi-Natural Experimental Evidence from China," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
    7. Bowei Li & Yanjun Qian & Fanbin Kong, 2023. "Does Outsourcing Service Reduce the Excessive Use of Chemical Fertilizers in Rural China? The Moderating Effects of Farm Size and Plot Size," Agriculture, MDPI, vol. 13(10), pages 1-18, September.
    8. Cai, Yi & Sun, Yucheng & Qi, Wene & Yi, Famin, 2022. "Impact of smartphone use on production outsourcing: evidence from litchi farming in southern China," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 25(4), September.
    9. Xin Deng & Zhongcheng Yan & Dingde Xu & Yanbin Qi, 2020. "Land Registration, Adjustment Experience, and Agricultural Machinery Adoption: Empirical Analysis from Rural China," Land, MDPI, vol. 9(3), pages 1-14, March.
    10. Qiangqiang Zhang & Beibei Yan & Xuexi Huo, 2018. "What Are the Effects of Participation in Production Outsourcing? Evidence from Chinese Apple Farmers," Sustainability, MDPI, vol. 10(12), pages 1-15, November.
    11. Meili Huan & Fengxia Dong & Liang Chi, 2022. "Mechanization services, factor allocation, and farm efficiency: Evidence from China," Review of Development Economics, Wiley Blackwell, vol. 26(3), pages 1618-1639, August.
    12. Qian, Long & Lu, Hua & Gao, Qiang & Lu, Hualiang, 2022. "Household-owned farm machinery vs. outsourced machinery services: The impact of agricultural mechanization on the land leasing behavior of relatively large-scale farmers in China," Land Use Policy, Elsevier, vol. 115(C).
    13. Meng Meng & Leng Yu & Xiaohua Yu, 2024. "Machinery structure, machinery subsidies, and agricultural productivity: Evidence from China," Agricultural Economics, International Association of Agricultural Economists, vol. 55(2), pages 223-246, March.
    14. Wangda Liao & Fusheng Zeng & Meseret Chanieabate, 2022. "Mechanization of Small-Scale Agriculture in China: Lessons for Enhancing Smallholder Access to Agricultural Machinery," Sustainability, MDPI, vol. 14(13), pages 1-21, June.
    15. Ziming Bai & Tianyi Wang & Jiabin Xu & Cuixia Li, 2023. "Can Agricultural Productive Services Inhibit Carbon Emissions? Evidence from China," Land, MDPI, vol. 12(7), pages 1-20, June.
    16. Xue Qu & Daizo Kojima & Laping Wu & Mitsuyoshi Ando, 2022. "Do Farming Scale and Mechanization Affect Moral Hazard in Rice Harvest Outsourcing Service in China?," Agriculture, MDPI, vol. 12(8), pages 1-12, August.
    17. Qinhang Xu & Peixin Zhu & Liang Tang, 2022. "Agricultural Services: Another Way of Farmland Utilization and Its Effect on Agricultural Green Total Factor Productivity in China," Land, MDPI, vol. 11(8), pages 1-15, July.
    18. Hu, Yue & Liu, Chang & Peng, Jiangang, 2021. "Financial inclusion and agricultural total factor productivity growth in China," Economic Modelling, Elsevier, vol. 96(C), pages 68-82.
    19. Jinkai Li & Jueying Chen & Heguang Liu, 2021. "Sustainable Agricultural Total Factor Productivity and Its Spatial Relationship with Urbanization in China," Sustainability, MDPI, vol. 13(12), pages 1-15, June.
    20. Liang, Longwu & Chen, Mingxing & Zhang, Xiaoping & Sun, Mingxing, 2024. "Understanding changes in household carbon footprint during rapid urbanization in China," Energy Policy, Elsevier, vol. 185(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:15:p:9339-:d:876304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.