IDEAS home Printed from https://ideas.repec.org/a/gam/jgames/v9y2018i3p46-d156807.html
   My bibliography  Save this article

Computation of Sparse and Dense Equilibrium Strategies of Evolutionary Games

Author

Listed:
  • Yiping Hao

    (Department of Mathematics, Iowa State University, Ames, IA 50011, USA
    These authors contributed equally to this work.)

  • Zhijun Wu

    (Department of Mathematics, Iowa State University, Ames, IA 50011, USA
    These authors contributed equally to this work.)

Abstract

The evolution of social or biological species can be modeled as an evolutionary game with the equilibrium strategies of the game as prediction for the ultimate distributions of species in population, when some species may survive with positive proportions, while others become extinct. We say a strategy is dense if it contains a large and diverse number of positive species, and is sparse if it has only a few dominant ones. Sparse equilibrium strategies can be found relatively easily, while dense ones are more computationally costly. Here we show that by formulating a “complementary” problem for the computation of equilibrium strategies, we are able to reduce the cost for computing dense equilibrium strategies much more efficiently. We describe the primary and complementary algorithms for computing dense as well as sparse equilibrium strategies, and present test results on randomly generated games as well as a more biologically related one. In particular, we demonstrate that the complementary algorithm is about an order of magnitude faster than the primary algorithm to obtain the dense equilibrium strategies for all our test cases.

Suggested Citation

  • Yiping Hao & Zhijun Wu, 2018. "Computation of Sparse and Dense Equilibrium Strategies of Evolutionary Games," Games, MDPI, vol. 9(3), pages 1-15, July.
  • Handle: RePEc:gam:jgames:v:9:y:2018:i:3:p:46-:d:156807
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-4336/9/3/46/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-4336/9/3/46/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gilboa, Itzhak & Zemel, Eitan, 1989. "Nash and correlated equilibria: Some complexity considerations," Games and Economic Behavior, Elsevier, vol. 1(1), pages 80-93, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. D. Timothy Bishop & Mark Broom & Richard Southwell, 2020. "Chris Cannings: A Life in Games," Dynamic Games and Applications, Springer, vol. 10(3), pages 591-617, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sung, Shao-Chin & Dimitrov, Dinko, 2010. "Computational complexity in additive hedonic games," European Journal of Operational Research, Elsevier, vol. 203(3), pages 635-639, June.
    2. Thomas Demuynck, 2014. "The computational complexity of rationalizing Pareto optimal choice behavior," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 42(3), pages 529-549, March.
    3. Bernhard von Stengel & Antoon van den Elzen & Dolf Talman, 2002. "Computing Normal Form Perfect Equilibria for Extensive Two-Person Games," Econometrica, Econometric Society, vol. 70(2), pages 693-715, March.
    4. Porter, Ryan & Nudelman, Eugene & Shoham, Yoav, 2008. "Simple search methods for finding a Nash equilibrium," Games and Economic Behavior, Elsevier, vol. 63(2), pages 642-662, July.
    5. Martin Shubik, 2011. "The Present and Future of Game Theory," Levine's Working Paper Archive 786969000000000173, David K. Levine.
    6. McLennan, Andrew & Tourky, Rabee, 2010. "Simple complexity from imitation games," Games and Economic Behavior, Elsevier, vol. 68(2), pages 683-688, March.
    7. Guzmán, Cristóbal & Riffo, Javiera & Telha, Claudio & Van Vyve, Mathieu, 2022. "A sequential Stackelberg game for dynamic inspection problems," European Journal of Operational Research, Elsevier, vol. 302(2), pages 727-739.
    8. Fernando Oliveira, 2010. "Bottom-up design of strategic options as finite automata," Computational Management Science, Springer, vol. 7(4), pages 355-375, October.
    9. Joseph Y. Halpern, 2007. "Computer Science and Game Theory: A Brief Survey," Papers cs/0703148, arXiv.org.
    10. McLennan, Andrew & Berg, Johannes, 2005. "Asymptotic expected number of Nash equilibria of two-player normal form games," Games and Economic Behavior, Elsevier, vol. 51(2), pages 264-295, May.
    11. Bharat Adsul & Jugal Garg & Ruta Mehta & Milind Sohoni & Bernhard von Stengel, 2021. "Fast Algorithms for Rank-1 Bimatrix Games," Operations Research, INFORMS, vol. 69(2), pages 613-631, March.
    12. Stein, Noah D. & Parrilo, Pablo A. & Ozdaglar, Asuman, 2011. "Correlated equilibria in continuous games: Characterization and computation," Games and Economic Behavior, Elsevier, vol. 71(2), pages 436-455, March.
    13. Guzman, Cristobal & Riffo, Javiera & Telha, Claudio & Van Vyve, Mathieu, 2021. "A Sequential Stackelberg Game for Dynamic Inspection Problems," LIDAM Discussion Papers CORE 2021036, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    14. Ferenc Forgó, 2011. "Generalized correlated equilibrium for two-person games in extensive form with perfect information," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 19(2), pages 201-213, June.
    15. P. Herings & Ronald Peeters, 2010. "Homotopy methods to compute equilibria in game theory," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 119-156, January.
    16. Demuynck, Thomas, 2011. "The computational complexity of rationalizing boundedly rational choice behavior," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 425-433.
    17. Amin Dehghanian & Yujia Xie & Nicoleta Serban, 2024. "Identifying Socially Optimal Equilibria Using Combinatorial Properties of Nash Equilibria in Bimatrix Games," INFORMS Journal on Computing, INFORMS, vol. 36(5), pages 1261-1286, September.
    18. Senthil K. Veeraraghavan & Laurens G. Debo, 2011. "Herding in Queues with Waiting Costs: Rationality and Regret," Manufacturing & Service Operations Management, INFORMS, vol. 13(3), pages 329-346, July.
    19. Brendan Kline & Elie Tamer, 2024. "Counterfactual Analysis in Empirical Games," Papers 2410.12731, arXiv.org.
    20. Etessami, Kousha, 2021. "The complexity of computing a (quasi-)perfect equilibrium for an n-player extensive form game," Games and Economic Behavior, Elsevier, vol. 125(C), pages 107-140.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jgames:v:9:y:2018:i:3:p:46-:d:156807. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.