IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Computational Complexity in Additive Hedonic Games

  • Sung, Shao-Chin
  • Dimitrov, Dinko

We investigate the computational complexity of several decision problems in hedonic coalition formation games and demonstrate that attaining stability in such games remains NP-hard even when they are additive. Precisely, we prove that when either core stability or strict core stability is under consideration, the existence problem of a stable coalition structure is NP-hard in the strong sense. Furthermore, the corresponding decision problems with respect to the existence of a Nash stable coalition structure and of an individually stable coalition structure turn out to be NP-complete in the strong sense.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by University of Munich, Department of Economics in its series Discussion Papers in Economics with number 6430.

in new window

Date of creation: 07 Oct 2008
Date of revision:
Handle: RePEc:lmu:muenec:6430
Contact details of provider: Postal:
Ludwigstr. 28, 80539 Munich, Germany

Phone: +49-(0)89-2180-3405
Fax: +49-(0)89-2180-3510
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Dinko Dimitrov & Peter Borm & Ruud Hendrickx & Shao Sung, 2006. "Simple Priorities and Core Stability in Hedonic Games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 26(2), pages 421-433, April.
  2. Richard Baron & Jacques Durieu & Hans Haller & Philippe Solal & Savani Rahul, 2008. "Good neighbors are hard to find: computational complexity of network formation," Post-Print hal-00268851, HAL.
  3. Sung, Shao-Chin & Dimitrov, Dinko, 2008. "Computational Complexity in Additive Hedonic Games," Discussion Papers in Economics 6430, University of Munich, Department of Economics.
  4. Ben-porath, Elchanan, 1990. "The complexity of computing a best response automaton in repeated games with mixed strategies," Games and Economic Behavior, Elsevier, vol. 2(1), pages 1-12, March.
  5. Itzhak Gilboa, 1988. "The Complexity of Computing Best-Response Automata in Repeated Games," Post-Print hal-00756286, HAL.
  6. Dreze, J H & Greenberg, J, 1980. "Hedonic Coalitions: Optimality and Stability," Econometrica, Econometric Society, vol. 48(4), pages 987-1003, May.
  7. Tayfun Sönmez & Suryapratim Banerjee & Hideo Konishi, 2001. "Core in a simple coalition formation game," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 18(1), pages 135-153.
  8. Richard Baron & Jacques Durieu & Hans Haller & Rahul Savani & Philippe Solal, 2008. "Good neighbors are hard to find: computational complexity of network formation," Review of Economic Design, Springer;Society for Economic Design, vol. 12(1), pages 1-19, April.
  9. Koller, Daphne & Megiddo, Nimrod, 1992. "The complexity of two-person zero-sum games in extensive form," Games and Economic Behavior, Elsevier, vol. 4(4), pages 528-552, October.
  10. Bogomolnaia, Anna & Jackson, Matthew O., 2002. "The Stability of Hedonic Coalition Structures," Games and Economic Behavior, Elsevier, vol. 38(2), pages 201-230, February.
  11. Jeroen Kuipers & Ulrich Faigle & Walter Kern, 1998. "Note Computing the nucleolus of min-cost spanning tree games is NP-hard," International Journal of Game Theory, Springer;Game Theory Society, vol. 27(3), pages 443-450.
  12. Sung, Shao Chin & Dimitrov, Dinko, 2011. "On core membership testing for hedonic coalition formation games," Center for Mathematical Economics Working Papers 374, Center for Mathematical Economics, Bielefeld University.
  13. Itzhak Gilboa & Eitan Zemel, 1989. "Nash and Correlated Equilibria: Some Complexity Considerations," Post-Print hal-00753241, HAL.
  14. Ballester, Coralio, 2004. "NP-completeness in hedonic games," Games and Economic Behavior, Elsevier, vol. 49(1), pages 1-30, October.
  15. Koller, Daphne & Megiddo, Nimrod & von Stengel, Bernhard, 1996. "Efficient Computation of Equilibria for Extensive Two-Person Games," Games and Economic Behavior, Elsevier, vol. 14(2), pages 247-259, June.
  16. Shao Sung & Dinko Dimitrov, 2007. "On Myopic Stability Concepts for Hedonic Games," Theory and Decision, Springer, vol. 62(1), pages 31-45, February.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:lmu:muenec:6430. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Tamilla Benkelberg)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.