IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v7y2025i3p36-d1701073.html
   My bibliography  Save this article

Navigating AI-Driven Financial Forecasting: A Systematic Review of Current Status and Critical Research Gaps

Author

Listed:
  • László Vancsura

    (Department of Agricultural Logistics, Trade and Marketing, Institute of Agricultural and Food Economics, Hungarian University of Agriculture and Life Sciences, 7400 Kaposvár, Hungary)

  • Tibor Tatay

    (Department of Statistics, Finances and Controlling, Széchenyi István University, 9026 Győr, Hungary)

  • Tibor Bareith

    (HUN-REN, Centre for Economic and Regional Studies, Institute of Economics, 1097 Budapest, Hungary)

Abstract

This systematic literature review explores the application of artificial intelligence (AI) and machine learning (ML) in financial market forecasting, with a focus on four asset classes: equities, cryptocurrencies, commodities, and foreign exchange markets. Guided by the PRISMA methodology, the study identifies the most widely used predictive models, particularly LSTM, GRU, XGBoost, and hybrid deep learning architectures, as well as key evaluation metrics, such as RMSE and MAPE. The findings confirm that AI-based approaches, especially neural networks, outperform traditional statistical methods in capturing non-linear and high-dimensional dynamics. However, the analysis also reveals several critical research gaps. Most notably, current models are rarely embedded into real or simulated trading strategies, limiting their practical applicability. Furthermore, the sensitivity of widely used metrics like MAPE to volatility remains underexplored, particularly in highly unstable environments such as crypto markets. Temporal robustness is also a concern, as many studies fail to validate their models across different market regimes. While data covering one to ten years is most common, few studies assess performance stability over time. By highlighting these limitations, this review not only synthesizes the current state of the art but also outlines essential directions for future research. Specifically, it calls for greater emphasis on model interpretability, strategy-level evaluation, and volatility-aware validation frameworks, thereby contributing to the advancement of AI’s real-world utility in financial forecasting.

Suggested Citation

  • László Vancsura & Tibor Tatay & Tibor Bareith, 2025. "Navigating AI-Driven Financial Forecasting: A Systematic Review of Current Status and Critical Research Gaps," Forecasting, MDPI, vol. 7(3), pages 1-49, July.
  • Handle: RePEc:gam:jforec:v:7:y:2025:i:3:p:36-:d:1701073
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/7/3/36/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/7/3/36/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Jue & Zhou, Hao & Hong, Tao & Li, Xiang & Wang, Shouyang, 2020. "A multi-granularity heterogeneous combination approach to crude oil price forecasting," Energy Economics, Elsevier, vol. 91(C).
    2. Xiaodan Liang & Zhaodi Ge & Liling Sun & Maowei He & Hanning Chen, 2019. "LSTM with Wavelet Transform Based Data Preprocessing for Stock Price Prediction," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-8, July.
    3. Urolagin, Siddhaling & Sharma, Nikhil & Datta, Tapan Kumar, 2021. "A combined architecture of multivariate LSTM with Mahalanobis and Z-Score transformations for oil price forecasting," Energy, Elsevier, vol. 231(C).
    4. Takahashi, Shuntaro & Chen, Yu & Tanaka-Ishii, Kumiko, 2019. "Modeling financial time-series with generative adversarial networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    5. Cao, Jian & Li, Zhi & Li, Jian, 2019. "Financial time series forecasting model based on CEEMDAN and LSTM," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 127-139.
    6. Yongmei Fang & Bo Guan & Shangjuan Wu & Saeed Heravi, 2020. "Optimal forecast combination based on ensemble empirical mode decomposition for agricultural commodity futures prices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 877-886, September.
    7. Aniruddha Dutta & Saket Kumar & Meheli Basu, 2020. "A Gated Recurrent Unit Approach to Bitcoin Price Prediction," JRFM, MDPI, vol. 13(2), pages 1-16, February.
    8. Deepak Gupta & Mahardhika Pratama & Zhenyuan Ma & Jun Li & Mukesh Prasad, 2019. "Financial time series forecasting using twin support vector regression," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-27, March.
    9. Ahmet Murat Ozbayoglu & Mehmet Ugur Gudelek & Omer Berat Sezer, 2020. "Deep Learning for Financial Applications : A Survey," Papers 2002.05786, arXiv.org.
    10. Fama, Eugene F, 1991. "Efficient Capital Markets: II," Journal of Finance, American Finance Association, vol. 46(5), pages 1575-1617, December.
    11. Xu, Zilin & Mohsin, Muhammad & Ullah, Kaleem & Ma, Xiaoyu, 2023. "Using econometric and machine learning models to forecast crude oil prices: Insights from economic history," Resources Policy, Elsevier, vol. 83(C).
    12. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    13. Shi, Tao & Li, Chongyang & Zhang, Wei & Zhang, Yi, 2023. "Forecasting on metal resource spot settlement price: New evidence from the machine learning model," Resources Policy, Elsevier, vol. 81(C).
    14. Bo Gao, 2022. "The Use of Machine Learning Combined with Data Mining Technology in Financial Risk Prevention," Computational Economics, Springer;Society for Computational Economics, vol. 59(4), pages 1385-1405, April.
    15. Zhang, Hong & Nguyen, Hoang & Vu, Diep-Anh & Bui, Xuan-Nam & Pradhan, Biswajeet, 2021. "Forecasting monthly copper price: A comparative study of various machine learning-based methods," Resources Policy, Elsevier, vol. 73(C).
    16. Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl.
    17. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    18. David Moher & Alessandro Liberati & Jennifer Tetzlaff & Douglas G Altman & The PRISMA Group, 2009. "Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement," PLOS Medicine, Public Library of Science, vol. 6(7), pages 1-6, July.
    19. Erdinc Akyildirim & Ahmet Goncu & Ahmet Sensoy, 2021. "Prediction of cryptocurrency returns using machine learning," Annals of Operations Research, Springer, vol. 297(1), pages 3-36, February.
    20. Tapia, Sebastian & Kristjanpoller, Werner, 2022. "Framework based on multiplicative error and residual analysis to forecast bitcoin intraday-volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    21. Robert J. Shiller, 2003. "From Efficient Markets Theory to Behavioral Finance," Journal of Economic Perspectives, American Economic Association, vol. 17(1), pages 83-104, Winter.
    22. Makridakis, Spyros, 1993. "Accuracy measures: theoretical and practical concerns," International Journal of Forecasting, Elsevier, vol. 9(4), pages 527-529, December.
    23. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    24. Wall, Larry D., 2018. "Some financial regulatory implications of artificial intelligence," Journal of Economics and Business, Elsevier, vol. 100(C), pages 55-63.
    25. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    26. Laszlo Vancsura & Tibor Tatay & Tibor Bareith, 2024. "Investigating the Role of Activation Functions in Predicting the Price of Cryptocurrencies during Critical Economic Periods," Virtual Economics, The London Academy of Science and Business, vol. 7(4), pages 64-91, December.
    27. Hualing Lin & Qiubi Sun & Sheng-Qun Chen, 2020. "Reducing Exchange Rate Risks in International Trade: A Hybrid Forecasting Approach of CEEMDAN and Multilayer LSTM," Sustainability, MDPI, vol. 12(6), pages 1-19, March.
    28. Ritika Chopra & Gagan Deep Sharma, 2021. "Application of Artificial Intelligence in Stock Market Forecasting: A Critique, Review, and Research Agenda," JRFM, MDPI, vol. 14(11), pages 1-34, November.
    29. Ghoddusi, Hamed & Creamer, Germán G. & Rafizadeh, Nima, 2019. "Machine learning in energy economics and finance: A review," Energy Economics, Elsevier, vol. 81(C), pages 709-727.
    30. Dinggao Liu & Zhenpeng Tang & Yi Cai, 2022. "A Hybrid Model for China’s Soybean Spot Price Prediction by Integrating CEEMDAN with Fuzzy Entropy Clustering and CNN-GRU-Attention," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    31. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    32. Joseph E. Stiglitz, 2000. "The Contributions of the Economics of Information to Twentieth Century Economics," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 115(4), pages 1441-1478.
    33. Liang, Xuedong & Luo, Peng & Li, Xiaoyan & Wang, Xia & Shu, Lingli, 2023. "Crude oil price prediction using deep reinforcement learning," Resources Policy, Elsevier, vol. 81(C).
    34. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    35. Wang, Jun & Cao, Junxing & Yuan, Shan & Cheng, Ming, 2021. "Short-term forecasting of natural gas prices by using a novel hybrid method based on a combination of the CEEMDAN-SE-and the PSO-ALS-optimized GRU network," Energy, Elsevier, vol. 233(C).
    36. Huei-Wen Teng & Michael Lee, 2019. "Estimation Procedures of Using Five Alternative Machine Learning Methods for Predicting Credit Card Default," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-27, September.
    37. Guliyev, Hasraddin & Mustafayev, Eldayag, 2022. "Predicting the changes in the WTI crude oil price dynamics using machine learning models," Resources Policy, Elsevier, vol. 77(C).
    38. Xiaojun Li & Pan Tang, 2020. "Stock index prediction based on wavelet transform and FCD‐MLGRU," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1229-1237, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sonntag, Dominik, 2018. "Die Theorie der fairen geometrischen Rendite [The Theory of Fair Geometric Returns]," MPRA Paper 87082, University Library of Munich, Germany.
    2. Yoonjae Noh & Jong-Min Kim & Soongoo Hong & Sangjin Kim, 2023. "Deep Learning Model for Multivariate High-Frequency Time-Series Data: Financial Market Index Prediction," Mathematics, MDPI, vol. 11(16), pages 1-18, August.
    3. David Peón & Anxo Calvo, 2012. "Using Behavioral Economics to Analyze Credit Policies in the Banking Industry," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 145-160.
    4. Glaser, Markus & Nöth, Markus & Weber, Martin, 2003. "Behavioral finance," Papers 03-14, Sonderforschungsbreich 504.
    5. Fernando Rubio, 2005. "Eficiencia De Mercado, Administracion De Carteras De Fondos Y Behavioural Finance," Finance 0503028, University Library of Munich, Germany, revised 23 Jul 2005.
    6. Thomas Holtfort, 2019. "From standard to evolutionary finance: a literature survey," Management Review Quarterly, Springer, vol. 69(2), pages 207-232, June.
    7. Nobel Prize Committee, 2013. "Understanding Asset Prices," Nobel Prize in Economics documents 2013-1, Nobel Prize Committee.
    8. Shiller, Robert J., 1999. "Human behavior and the efficiency of the financial system," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 20, pages 1305-1340, Elsevier.
    9. Amin Aminimehr & Ali Raoofi & Akbar Aminimehr & Amirhossein Aminimehr, 2022. "A Comprehensive Study of Market Prediction from Efficient Market Hypothesis up to Late Intelligent Market Prediction Approaches," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 781-815, August.
    10. Martin Gold, 2010. "Fiduciary Finance," Books, Edward Elgar Publishing, number 13813.
    11. Christiane Goodfellow & Dirk Schiereck & Steffen Wippler, 2013. "Are behavioural finance equity funds a superior investment? A note on fund performance and market efficiency," Journal of Asset Management, Palgrave Macmillan, vol. 14(2), pages 111-119, April.
    12. Kentaro Imajo & Kentaro Minami & Katsuya Ito & Kei Nakagawa, 2020. "Deep Portfolio Optimization via Distributional Prediction of Residual Factors," Papers 2012.07245, arXiv.org.
    13. Robert J. Shiller, 2003. "From Efficient Markets Theory to Behavioral Finance," Journal of Economic Perspectives, American Economic Association, vol. 17(1), pages 83-104, Winter.
    14. Lu Zhang, 2019. "Q-factors and Investment CAPM," NBER Working Papers 26538, National Bureau of Economic Research, Inc.
    15. Roland Rothenstein, 2018. "Quantification of market efficiency based on informational-entropy," Papers 1812.02371, arXiv.org.
    16. Qianwei Ying & Tahir Yousaf & Qurat ul Ain & Yasmeen Akhtar & Muhammad Shahid Rasheed, 2019. "Stock Investment and Excess Returns: A Critical Review in the Light of the Efficient Market Hypothesis," JRFM, MDPI, vol. 12(2), pages 1-22, June.
    17. Ni, Yensen & Cheng, Yirung & Huang, Paoyu & Day, Min-Yuh, 2018. "Trading strategies in terms of continuous rising (falling) prices or continuous bullish (bearish) candlesticks emitted," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 188-204.
    18. Lin, Yu & Lu, Qin & Tan, Bin & Yu, Yuanyuan, 2022. "Forecasting energy prices using a novel hybrid model with variational mode decomposition," Energy, Elsevier, vol. 246(C).
    19. Bradley Jones, 2015. "Asset Bubbles: Re-thinking Policy for the Age of Asset Management," IMF Working Papers 2015/027, International Monetary Fund.
    20. David Hirshleifer, 2001. "Investor Psychology and Asset Pricing," Journal of Finance, American Finance Association, vol. 56(4), pages 1533-1597, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:7:y:2025:i:3:p:36-:d:1701073. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.