Machine Learning Models and Intra-Daily Market Information for the Prediction of Italian Electricity Prices
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ekaterina Abramova & Derek Bunn, 2020. "Forecasting the Intra-Day Spread Densities of Electricity Prices," Papers 2002.10566, arXiv.org.
- Ghoddusi, Hamed & Creamer, Germán G. & Rafizadeh, Nima, 2019. "Machine learning in energy economics and finance: A review," Energy Economics, Elsevier, vol. 81(C), pages 709-727.
- Barrow, Devon K. & Crone, Sven F., 2016. "A comparison of AdaBoost algorithms for time series forecast combination," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1103-1119.
- Simon Schnürch & Andreas Wagner, 2020. "Electricity Price Forecasting with Neural Networks on EPEX Order Books," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(3), pages 189-206, May.
- Grzegorz Marcjasz & Bartosz Uniejewski & Rafał Weron, 2020.
"Beating the Naïve—Combining LASSO with Naïve Intraday Electricity Price Forecasts,"
Energies, MDPI, vol. 13(7), pages 1-16, April.
- Grzegorz Marcjasz & Bartosz Uniejewski & Rafal Weron, 2020. "Beating the naive: Combining LASSO with naive intraday electricity price forecasts," WORking papers in Management Science (WORMS) WORMS/20/01, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
- Carlo Fezzi and Luca Mosetti, 2020. "Size Matters: Estimation Sample Length and Electricity Price Forecasting Accuracy," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 231-254.
- Graf, Christoph & Quaglia, Federico & Wolak, Frank A., 2021. "(Machine) learning from the COVID-19 lockdown about electricity market performance with a large share of renewables," Journal of Environmental Economics and Management, Elsevier, vol. 105(C).
- Marcjasz, Grzegorz & Uniejewski, Bartosz & Weron, Rafał, 2019. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting with NARX neural networks," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1520-1532.
- Petropoulos, Fotios & Hyndman, Rob J. & Bergmeir, Christoph, 2018. "Exploring the sources of uncertainty: Why does bagging for time series forecasting work?," European Journal of Operational Research, Elsevier, vol. 268(2), pages 545-554.
- Gianfreda, Angelica & Grossi, Luigi, 2012.
"Forecasting Italian electricity zonal prices with exogenous variables,"
Energy Economics, Elsevier, vol. 34(6), pages 2228-2239.
- Angelica Gianfreda & Luigi Grossi, 2011. "Forecasting Italian Electricity Zonal Prices with Exogenous Variables," Working Papers 01/2011, University of Verona, Department of Economics.
- Nesreen Ahmed & Amir Atiya & Neamat El Gayar & Hisham El-Shishiny, 2010. "An Empirical Comparison of Machine Learning Models for Time Series Forecasting," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 594-621.
- Maciejowska, Katarzyna & Nitka, Weronika & Weron, Tomasz, 2021. "Enhancing load, wind and solar generation for day-ahead forecasting of electricity prices," Energy Economics, Elsevier, vol. 99(C).
- Luigi Grossi & Sven Heim & Kai Hüschelrath & Michael Waterson, 2018.
"Electricity market integration and the impact of unilateral policy reforms,"
Oxford Economic Papers, Oxford University Press, vol. 70(3), pages 799-820.
- Grossi, Luigi & Heim, Sven & Hüschelrath, Kai & Waterson, Michael, 2015. "Electricity market integration and the impact of unilateral policy reforms," ZEW Discussion Papers 15-072, ZEW - Leibniz Centre for European Economic Research.
- Luigi Grossi & Sven Heim & Kai Hüschelrath & Michael Waterson, 2018. "Electricity market integration and the impact of unilateral policy reforms," Post-Print hal-01952930, HAL.
- Fianu, Emmanuel Senyo & Ahelegbey, Daniel Felix & Grossi, Luigi, 2022.
"Modeling risk contagion in the Italian zonal electricity market,"
European Journal of Operational Research, Elsevier, vol. 298(2), pages 656-679.
- Daniel Felix Ahelegbey & Emmanuel Senyo Fianu & Luigi Grossi, 2020. "Modeling Risk Contagion in the Italian Zonal Electricity Market," DEM Working Papers Series 182, University of Pavia, Department of Economics and Management.
- Lago, Jesus & De Ridder, Fjo & De Schutter, Bart, 2018. "Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms," Applied Energy, Elsevier, vol. 221(C), pages 386-405.
- Bordignon, Silvano & Bunn, Derek W. & Lisi, Francesco & Nan, Fany, 2013. "Combining day-ahead forecasts for British electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 88-103.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Tom Doan, 2025. "DMARIANO: RATS procedure to compute Diebold-Mariano Forecast Comparison Test," Statistical Software Components RTS00055, Boston College Department of Economics.
- Katarzyna Maciejowska & Bartosz Uniejewski & Tomasz Serafin, 2020.
"PCA Forecast Averaging—Predicting Day-Ahead and Intraday Electricity Prices,"
Energies, MDPI, vol. 13(14), pages 1-19, July.
- Katarzyna Maciejowska & Bartosz Uniejewski & Tomasz Serafin, 2020. "PCA forecast averaging - predicting day-ahead and intraday electricity prices," WORking papers in Management Science (WORMS) WORMS/20/02, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
- Taddy, Matthew A. & Gramacy, Robert B. & Polson, Nicholas G., 2011. "Dynamic Trees for Learning and Design," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 109-123.
- Alexandre Lucas & Konstantinos Pegios & Evangelos Kotsakis & Dan Clarke, 2020. "Price Forecasting for the Balancing Energy Market Using Machine-Learning Regression," Energies, MDPI, vol. 13(20), pages 1-16, October.
- Ekaterina Abramova & Derek Bunn, 2020. "Forecasting the Intra-Day Spread Densities of Electricity Prices," Energies, MDPI, vol. 13(3), pages 1-31, February.
- Weron, Rafał, 2014.
"Electricity price forecasting: A review of the state-of-the-art with a look into the future,"
International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
- Rafal Weron, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," HSC Research Reports HSC/14/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Beltrami, Filippo & Fontini, Fulvio & Grossi, Luigi, 2021. "The value of carbon emission reduction induced by Renewable Energy Sources in the Italian power market," Ecological Economics, Elsevier, vol. 189(C).
- Narajewski, Michał & Ziel, Florian, 2020. "Ensemble forecasting for intraday electricity prices: Simulating trajectories," Applied Energy, Elsevier, vol. 279(C).
- Grossi, Luigi & Nan, Fany, 2019. "Robust forecasting of electricity prices: Simulations, models and the impact of renewable sources," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 305-318.
- Nowotarski, Jakub & Weron, Rafał, 2018.
"Recent advances in electricity price forecasting: A review of probabilistic forecasting,"
Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
- Jakub Nowotarski & Rafal Weron, 2016. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," HSC Research Reports HSC/16/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Micha{l} Narajewski & Florian Ziel, 2020. "Ensemble Forecasting for Intraday Electricity Prices: Simulating Trajectories," Papers 2005.01365, arXiv.org, revised Aug 2020.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Katarzyna Maciejowska & Bartosz Uniejewski & Rafa{l} Weron, 2022. "Forecasting Electricity Prices," Papers 2204.11735, arXiv.org.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Marcjasz, Grzegorz & Narajewski, Michał & Weron, Rafał & Ziel, Florian, 2023.
"Distributional neural networks for electricity price forecasting,"
Energy Economics, Elsevier, vol. 125(C).
- Grzegorz Marcjasz & Micha{l} Narajewski & Rafa{l} Weron & Florian Ziel, 2022. "Distributional neural networks for electricity price forecasting," Papers 2207.02832, arXiv.org, revised Dec 2022.
- Nickelsen, Daniel & Müller, Gernot, 2025. "Bayesian hierarchical probabilistic forecasting of intraday electricity prices," Applied Energy, Elsevier, vol. 380(C).
- Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021.
"Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark,"
Applied Energy, Elsevier, vol. 293(C).
- Jesus Lago & Grzegorz Marcjasz & Bart De Schutter & Rafa{l} Weron, 2020. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Papers 2008.08004, arXiv.org, revised Dec 2020.
- Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
- Serafin, Tomasz & Marcjasz, Grzegorz & Weron, Rafał, 2022.
"Trading on short-term path forecasts of intraday electricity prices,"
Energy Economics, Elsevier, vol. 112(C).
- Tomasz Serafin & Grzegorz Marcjasz & Rafal Weron, 2020. "Trading on short-term path forecasts of intraday electricity prices," WORking papers in Management Science (WORMS) WORMS/20/17, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
- Chȩć, Katarzyna & Uniejewski, Bartosz & Weron, Rafał, 2025.
"Extrapolating the long-term seasonal component of electricity prices for forecasting in the day-ahead market,"
Journal of Commodity Markets, Elsevier, vol. 37(C).
- Katarzyna Chec & Bartosz Uniejewski & Rafal Weron, 2024. "Extrapolating the long-term seasonal component of electricity prices for forecasting in the day-ahead market," WORking papers in Management Science (WORMS) WORMS/24/04, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
- Katarzyna Chk{e}'c & Bartosz Uniejewski & Rafa{l} Weron, 2025. "Extrapolating the long-term seasonal component of electricity prices for forecasting in the day-ahead market," Papers 2503.02518, arXiv.org.
- Cerasa, Andrea & Zani, Alessandro, 2025. "Enhancing electricity price forecasting accuracy: A novel filtering strategy for improved out-of-sample predictions," Applied Energy, Elsevier, vol. 383(C).
- Micha{l} Narajewski & Florian Ziel, 2020. "Ensemble Forecasting for Intraday Electricity Prices: Simulating Trajectories," Papers 2005.01365, arXiv.org, revised Aug 2020.
- Narajewski, Michał & Ziel, Florian, 2020. "Ensemble forecasting for intraday electricity prices: Simulating trajectories," Applied Energy, Elsevier, vol. 279(C).
- Özen, Kadir & Yıldırım, Dilem, 2021. "Application of bagging in day-ahead electricity price forecasting and factor augmentation," Energy Economics, Elsevier, vol. 103(C).
- Michał Narajewski, 2022. "Probabilistic Forecasting of German Electricity Imbalance Prices," Energies, MDPI, vol. 15(14), pages 1-17, July.
- Nametala, Ciniro Aparecido Leite & Faria, Wandry Rodrigues & Lage, Guilherme Guimarães & Pereira, Benvindo Rodrigues, 2023. "Analysis of hourly price granularity implementation in the Brazilian deregulated electricity contracting environment," Utilities Policy, Elsevier, vol. 81(C).
- Ziel, Florian & Weron, Rafał, 2018.
"Day-ahead electricity price forecasting with high-dimensional structures: Univariate vs. multivariate modeling frameworks,"
Energy Economics, Elsevier, vol. 70(C), pages 396-420.
- Florian Ziel & Rafal Weron, 2018. "Day-ahead electricity price forecasting with high-dimensional structures: Univariate vs. multivariate modeling frameworks," Papers 1805.06649, arXiv.org.
- Halužan, Marko & Verbič, Miroslav & Zorić, Jelena, 2020. "Performance of alternative electricity price forecasting methods: Findings from the Greek and Hungarian power exchanges," Applied Energy, Elsevier, vol. 277(C).
- Arkadiusz Jędrzejewski & Grzegorz Marcjasz & Rafał Weron, 2021.
"Importance of the Long-Term Seasonal Component in Day-Ahead Electricity Price Forecasting Revisited: Parameter-Rich Models Estimated via the LASSO,"
Energies, MDPI, vol. 14(11), pages 1-17, June.
- Arkadiusz Jedrzejewski & Grzegorz Marcjasz & Rafal Weron, 2021. "Importance of the long-term seasonal component in day-ahead electricity price forecasting revisited: Parameter-rich models estimated via the LASSO," WORking papers in Management Science (WORMS) WORMS/21/04, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
- Micha{l} Narajewski & Florian Ziel, 2021. "Optimal bidding in hourly and quarter-hourly electricity price auctions: trading large volumes of power with market impact and transaction costs," Papers 2104.14204, arXiv.org, revised Feb 2022.
- Brusaferri, Alessandro & Matteucci, Matteo & Portolani, Pietro & Vitali, Andrea, 2019. "Bayesian deep learning based method for probabilistic forecast of day-ahead electricity prices," Applied Energy, Elsevier, vol. 250(C), pages 1158-1175.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:5:y:2022:i:1:p:3-101:d:1020016. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/gam/jforec/v5y2022i1p3-101d1020016.html