IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i9p667-d76491.html
   My bibliography  Save this article

Promoting Effect of Inorganic Alkali on Carbon Dioxide Adsorption in Amine-Modified MCM-41

Author

Listed:
  • Yang Teng

    (Beijing Key Laboratory of Emission Surveillance and Control for Thermal Power Generation, North China Electric Power University, Beijing 102206, China)

  • Lijiao Li

    (Beijing Key Laboratory of Emission Surveillance and Control for Thermal Power Generation, North China Electric Power University, Beijing 102206, China)

  • Gang Xu

    (Beijing Key Laboratory of Emission Surveillance and Control for Thermal Power Generation, North China Electric Power University, Beijing 102206, China)

  • Kai Zhang

    (Beijing Key Laboratory of Emission Surveillance and Control for Thermal Power Generation, North China Electric Power University, Beijing 102206, China)

  • Kaixi Li

    (Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, Shanxi, China)

Abstract

Three kinds of inorganic alkali are introduced into tetraethylenepentamine (TEPA) and polyethyleneimine (PEI)-modified MCM-41 as the CO 2 adsorbents. X-ray diffraction, N 2 adsorption, fourier-transform infrared and thermo gravimetric analysis are used to characterize the surface structures and the thermal stability of adsorbents. Chemical titration method is used to measure the alkali amounts of adsorbents. Thermo-gravimetric analysis with 10% CO 2 /90% N 2 as the simulated flue gas is used to test the CO 2 adsorption performance of adsorbents. The results show that all three kinds of inorganic alkali-containing adsorbents exhibit higher CO 2 adsorption capability than traditional TEPA and PEI modified samples. Ca(OH) 2 and PEI modified samples exhibit the highest adsorption capacity and recyclable property. The introduction of inorganic alkali changes the chemical adsorption mechanism between CO 2 and adsorbent surface due to the increased hydroxyl groups. The CO 2 adsorption capacities have a linear dependence relation with the alkali amounts of adsorbents, indicating that alkali amount is a critical factor for the exploration of novel adsorbents.

Suggested Citation

  • Yang Teng & Lijiao Li & Gang Xu & Kai Zhang & Kaixi Li, 2016. "Promoting Effect of Inorganic Alkali on Carbon Dioxide Adsorption in Amine-Modified MCM-41," Energies, MDPI, vol. 9(9), pages 1-11, August.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:9:p:667-:d:76491
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/9/667/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/9/667/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Koronaki, I.P. & Prentza, L. & Papaefthimiou, V., 2015. "Modeling of CO2 capture via chemical absorption processes − An extensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 547-566.
    2. Gibbins, Jon & Chalmers, Hannah, 2008. "Carbon capture and storage," Energy Policy, Elsevier, vol. 36(12), pages 4317-4322, December.
    3. Xu, Gang & Li, Le & Yang, Yongping & Tian, Longhu & Liu, Tong & Zhang, Kai, 2012. "A novel CO2 cryogenic liquefaction and separation system," Energy, Elsevier, vol. 42(1), pages 522-529.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Setiawan, Andri D. & Cuppen, Eefje, 2013. "Stakeholder perspectives on carbon capture and storage in Indonesia," Energy Policy, Elsevier, vol. 61(C), pages 1188-1199.
    2. Barelli, L. & Ottaviano, A., 2014. "Solid oxide fuel cell technology coupled with methane dry reforming: A viable option for high efficiency plant with reduced CO2 emissions," Energy, Elsevier, vol. 71(C), pages 118-129.
    3. Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
    4. Christian Leßmann & Arne Steinkraus, 2016. "Climate Notes: “Carbon Capture and Storage” – What is the Cost of Cutting Emissions?," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 69(05), pages 51-54, March.
    5. Aydin, Gokhan & Karakurt, Izzet & Aydiner, Kerim, 2010. "Evaluation of geologic storage options of CO2: Applicability, cost, storage capacity and safety," Energy Policy, Elsevier, vol. 38(9), pages 5072-5080, September.
    6. Stewart Russell & Nils Markusson & Vivian Scott, 2012. "What will CCS demonstrations demonstrate?," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(6), pages 651-668, August.
    7. Lin, Chih-Wei & Nazeri, Mahmoud & Bhattacharji, Ayan & Spicer, George & Maroto-Valer, M. Mercedes, 2016. "Apparatus and method for calibrating a Coriolis mass flow meter for carbon dioxide at pressure and temperature conditions represented to CCS pipeline operations," Applied Energy, Elsevier, vol. 165(C), pages 759-764.
    8. Cavalcanti, Eduardo J.C. & Lima, Matheus S.R. & de Souza, Gabriel F., 2020. "Comparison of carbon capture system and concentrated solar power in natural gas combined cycle: Exergetic and exergoenvironmental analyses," Renewable Energy, Elsevier, vol. 156(C), pages 1336-1347.
    9. Kemp, Alexander G. & Sola Kasim, A., 2010. "A futuristic least-cost optimisation model of CO2 transportation and storage in the UK/UK Continental Shelf," Energy Policy, Elsevier, vol. 38(7), pages 3652-3667, July.
    10. Maitri Verma & Alok Kumar Verma & A. K. Misra, 2021. "Mathematical modeling and optimal control of carbon dioxide emissions from energy sector," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13919-13944, September.
    11. Gang Xu & Feifei Liang & Yongping Yang & Yue Hu & Kai Zhang & Wenyi Liu, 2014. "An Improved CO 2 Separation and Purification System Based on Cryogenic Separation and Distillation Theory," Energies, MDPI, vol. 7(5), pages 1-19, May.
    12. Saman Hasan & Abubakar Jibrin Abbas & Ghasem Ghavami Nasr, 2020. "Improving the Carbon Capture Efficiency for Gas Power Plants through Amine-Based Absorbents," Sustainability, MDPI, vol. 13(1), pages 1-27, December.
    13. Widuramina Sameendranath Amarasinghe & Ingebret Fjelde & Anna Maija Nørstebø Flaata, 2021. "Visual investigation of CO2 dissolution and convection in heterogeneous porous media at reservoir temperature and pressure conditions," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(2), pages 342-359, April.
    14. Iyer, Gokul & Hultman, Nathan & Eom, Jiyong & McJeon, Haewon & Patel, Pralit & Clarke, Leon, 2015. "Diffusion of low-carbon technologies and the feasibility of long-term climate targets," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 103-118.
    15. Marshall, Jonathan Paul, 2016. "Disordering fantasies of coal and technology: Carbon capture and storage in Australia," Energy Policy, Elsevier, vol. 99(C), pages 288-298.
    16. Haftendorn, C. & Kemfert, C. & Holz, F., 2012. "What about coal? Interactions between climate policies and the global steam coal market until 2030," Energy Policy, Elsevier, vol. 48(C), pages 274-283.
    17. Xu, Ming-Xin & Wu, Hai-Bo & Wu, Ya-Chang & Wang, Han-Xiao & Ouyang, Hao-Dong & Lu, Qiang, 2021. "Design and evaluation of a novel system for the flue gas compression and purification from the oxy-fuel combustion process," Applied Energy, Elsevier, vol. 285(C).
    18. Wu, Xiao & Wang, Meihong & Liao, Peizhi & Shen, Jiong & Li, Yiguo, 2020. "Solvent-based post-combustion CO2 capture for power plants: A critical review and perspective on dynamic modelling, system identification, process control and flexible operation," Applied Energy, Elsevier, vol. 257(C).
    19. Khakpoor, Nima & Mostafavi, Ehsan & Mahinpey, Nader & De la Hoz Siegler, Hector, 2019. "Oxygen transport capacity and kinetic study of ilmenite ores for methane chemical-looping combustion," Energy, Elsevier, vol. 169(C), pages 329-337.
    20. Wang, Honglin & Liu, Yanrong & Laaksonen, Aatto & Krook-Riekkola, Anna & Yang, Zhuhong & Lu, Xiaohua & Ji, Xiaoyan, 2020. "Carbon recycling – An immense resource and key to a smart climate engineering: A survey of technologies, cost and impurity impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:9:p:667-:d:76491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.