IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i5p3815-3831d49027.html
   My bibliography  Save this article

Wheel Torque Distribution of Four-Wheel-Drive Electric Vehicles Based on Multi-Objective Optimization

Author

Listed:
  • Cheng Lin

    (Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing Institute of Technology, Beijing 100081, China
    These authors contributed equally to this work.)

  • Zhifeng Xu

    (Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing Institute of Technology, Beijing 100081, China
    These authors contributed equally to this work.)

Abstract

The wheel driving torque on four-wheel-drive electric vehicles (4WDEVs) can be modulated precisely and continuously, therefore maneuverability and energy-saving control can be carried out at the same time. In this paper, a wheel torque distribution strategy is developed based on multi-objective optimization to improve vehicle maneuverability and reduce energy consumption. In the high-layer of the presented method, sliding mode control is used to calculate the desired yaw moment due to the model inaccuracy and parameter error. In the low-layer, mathematical programming with the penalty function consisting of the yaw moment control offset, the drive system energy loss and the slip ratio constraint is used for wheel torque control allocation. The programming is solved with the combination of off-line and on-line optimization to reduce the calculation cost, and the optimization results are sent to motor controllers as torque commands. Co-simulation based on MATLAB ® and Carsim ® proves that the developed strategy can both improve the vehicle maneuverability and reduce energy consumption.

Suggested Citation

  • Cheng Lin & Zhifeng Xu, 2015. "Wheel Torque Distribution of Four-Wheel-Drive Electric Vehicles Based on Multi-Objective Optimization," Energies, MDPI, vol. 8(5), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:5:p:3815-3831:d:49027
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/5/3815/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/5/3815/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tian Wu & Mengbo Zhang & Xunmin Ou, 2014. "Analysis of Future Vehicle Energy Demand in China Based on a Gompertz Function Method and Computable General Equilibrium Model," Energies, MDPI, vol. 7(11), pages 1-29, November.
    2. Hongwen He & Jiankun Peng & Rui Xiong & Hao Fan, 2014. "An Acceleration Slip Regulation Strategy for Four-Wheel Drive Electric Vehicles Based on Sliding Mode Control," Energies, MDPI, vol. 7(6), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junnian Wang & Siwen Lv & Nana Sun & Shoulin Gao & Wen Sun & Zidong Zhou, 2021. "Torque Vectoring Control of RWID Electric Vehicle for Reducing Driving-Wheel Slippage Energy Dissipation in Cornering," Energies, MDPI, vol. 14(23), pages 1-16, December.
    2. Zhaolong Zhang & Yuan Zou & Xudong Zhang & Zhifeng Xu & Han Wang, 2020. "Driver Model Based on Optimized Calculation and Functional Safety Simulation," Energies, MDPI, vol. 13(24), pages 1-12, December.
    3. Yu-Fan Chen & I-Ming Chen & Joshua Chang & Tyng Liu, 2017. "Design and Analysis of a New Torque Vectoring System with a Ravigneaux Gearset for Vehicle Applications," Energies, MDPI, vol. 10(12), pages 1-16, December.
    4. Jiongjiong Cai & Peng Ke & Xiao Qu & Zihui Wang, 2022. "Research on the Design of Auxiliary Generator for Enthalpy Reduction and Steady Speed Scroll Expander," Energies, MDPI, vol. 15(9), pages 1-17, April.
    5. Thanh Vo-Duy & Minh C. Ta & Bảo-Huy Nguyễn & João Pedro F. Trovão, 2020. "Experimental Platform for Evaluation of On-Board Real-Time Motion Controllers for Electric Vehicles," Energies, MDPI, vol. 13(23), pages 1-28, December.
    6. Chuanjia Han & Bo Yang & Tao Bao & Tao Yu & Xiaoshun Zhang, 2017. "Bacteria Foraging Reinforcement Learning for Risk-Based Economic Dispatch via Knowledge Transfer," Energies, MDPI, vol. 10(5), pages 1-24, May.
    7. Kritika Deepak & Mohamed Amine Frikha & Yassine Benômar & Mohamed El Baghdadi & Omar Hegazy, 2023. "In-Wheel Motor Drive Systems for Electric Vehicles: State of the Art, Challenges, and Future Trends," Energies, MDPI, vol. 16(7), pages 1-31, March.
    8. Rufei Hou & Li Zhai & Tianmin Sun, 2018. "Steering Stability Control for a Four Hub-Motor Independent-Drive Electric Vehicle with Varying Adhesion Coefficient," Energies, MDPI, vol. 11(9), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Tianduo & Ou, Xunmin & Yuan, Zhiyi & Yan, Xiaoyu & Zhang, Xiliang, 2018. "Development and application of China provincial road transport energy demand and GHG emissions analysis model," Applied Energy, Elsevier, vol. 222(C), pages 313-328.
    2. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    3. Ran Chen & Zongxia Jiao & Liang Yan & Yaoxing Shang & Shuai Wu, 2019. "Nonlinear Synchronous Control for H-Type Gantry Stage Used in Electric Vehicles Manufacturing," Energies, MDPI, vol. 12(12), pages 1-16, June.
    4. ZhiWu Zhou & Julián Alcalá & Víctor Yepes, 2020. "Environmental, Economic and Social Impact Assessment: Study of Bridges in China’s Five Major Economic Regions," IJERPH, MDPI, vol. 18(1), pages 1-33, December.
    5. Kanghyun Nam & Yoichi Hori & Choonyoung Lee, 2015. "Wheel Slip Control for Improving Traction-Ability and Energy Efficiency of a Personal Electric Vehicle," Energies, MDPI, vol. 8(7), pages 1-21, July.
    6. Xiong, Siqin & Wang, Yunshi & Bai, Bo & Ma, Xiaoming, 2021. "A hybrid life cycle assessment of the large-scale application of electric vehicles," Energy, Elsevier, vol. 216(C).
    7. Lian Lian & Wen Tian & Hongfeng Xu & Menglan Zheng, 2018. "Modeling and Forecasting Passenger Car Ownership Based on Symbolic Regression," Sustainability, MDPI, vol. 10(7), pages 1-16, July.
    8. Miranda, Matheus H.R. & Silva, Fabrício L. & Lourenço, Maria A.M. & Eckert, Jony J. & Silva, Ludmila C.A., 2022. "Electric vehicle powertrain and fuzzy controller optimization using a planar dynamics simulation based on a real-world driving cycle," Energy, Elsevier, vol. 238(PC).
    9. Zhang, Qi & Xu, Jin & Wang, Yujie & Hasanbeigi, Ali & Zhang, Wei & Lu, Hongyou & Arens, Marlene, 2018. "Comprehensive assessment of energy conservation and CO2 emissions mitigation in China’s iron and steel industry based on dynamic material flows," Applied Energy, Elsevier, vol. 209(C), pages 251-265.
    10. Thanh Vo-Duy & Minh C. Ta & Bảo-Huy Nguyễn & João Pedro F. Trovão, 2020. "Experimental Platform for Evaluation of On-Board Real-Time Motion Controllers for Electric Vehicles," Energies, MDPI, vol. 13(23), pages 1-28, December.
    11. Lin Ma & Qinchuan Du & Tian Wu, 2019. "Government Intervention and Automobile Industry Structure: Theory and Evidence from China," Sustainability, MDPI, vol. 11(17), pages 1-25, August.
    12. Xudong Zhang & Dietmar Göhlich, 2017. "Integrated Traction Control Strategy for Distributed Drive Electric Vehicles with Improvement of Economy and Longitudinal Driving Stability," Energies, MDPI, vol. 10(1), pages 1-18, January.
    13. Wanke Cao & Helin Liu & Cheng Lin & Yuhua Chang & Zhiyin Liu & Antoni Szumanowski, 2017. "Co-Design Based Lateral Motion Control of All-Wheel-Independent-Drive Electric Vehicles with Network Congestion," Energies, MDPI, vol. 10(10), pages 1-16, October.
    14. Li, Wei & Jia, Zhijie, 2016. "The impact of emission trading scheme and the ratio of free quota: A dynamic recursive CGE model in China," Applied Energy, Elsevier, vol. 174(C), pages 1-14.
    15. Wu, Tian & Shen, Qu & Xu, Ming & Peng, Tianduo & Ou, Xunmin, 2018. "Development and application of an energy use and CO2 emissions reduction evaluation model for China's online car hailing services," Energy, Elsevier, vol. 154(C), pages 298-307.
    16. Jiangyi Lv & Hongwen He & Wei Liu & Yong Chen & Fengchun Sun, 2019. "Vehicle Velocity Estimation Fusion with Kinematic Integral and Empirical Correction on Multi-Timescales," Energies, MDPI, vol. 12(7), pages 1-24, April.
    17. Yan, Jiaze & Wang, Ge & Chen, Siyuan & Zhang, He & Qian, Jiaqi & Mao, Yuxuan, 2022. "Harnessing freight platforms to promote the penetration of long-haul heavy-duty hydrogen fuel-cell trucks," Energy, Elsevier, vol. 254(PA).
    18. Lin, Boqiang & Jia, Zhijie, 2020. "Does the different sectoral coverage matter? An analysis of China's carbon trading market," Energy Policy, Elsevier, vol. 137(C).
    19. Lingfei Wu & Jinfang Gou & Lifang Wang & Junzhi Zhang, 2015. "Acceleration Slip Regulation Strategy for Distributed Drive Electric Vehicles with Independent Front Axle Drive Motors," Energies, MDPI, vol. 8(5), pages 1-30, May.
    20. Xudong Zhang & Dietmar Göhlich, 2017. "A hierarchical estimator development for estimation of tire-road friction coefficient," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:5:p:3815-3831:d:49027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.