IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6448-d457549.html
   My bibliography  Save this article

Experimental Platform for Evaluation of On-Board Real-Time Motion Controllers for Electric Vehicles

Author

Listed:
  • Thanh Vo-Duy

    (CTI Laboratory for Electric Vehicles, Department of Industrial Automation, Hanoi University of Science and Technology, Hanoi 10000, Vietnam)

  • Minh C. Ta

    (CTI Laboratory for Electric Vehicles, Department of Industrial Automation, Hanoi University of Science and Technology, Hanoi 10000, Vietnam
    e-TESC Lab., University of Sherbrooke, Sherbrooke, QC J1K 2R1, Canada)

  • Bảo-Huy Nguyễn

    (CTI Laboratory for Electric Vehicles, Department of Industrial Automation, Hanoi University of Science and Technology, Hanoi 10000, Vietnam
    e-TESC Lab., University of Sherbrooke, Sherbrooke, QC J1K 2R1, Canada)

  • João Pedro F. Trovão

    (e-TESC Lab., University of Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
    INESC Coimbra, DEEC, University of Coimbra, Polo II, 3030-290 Coimbra, Portugal
    Polytechnic Institute of Coimbra, IPC-ISEC, DEE, 3030-199 Coimbra, Portugal)

Abstract

Electric vehicles are considered to be a greener and safer means of transport thanks to the distinguished advantages of electric motors. Studies on this object require experimental platforms for control validation purpose. Under the pressure of research, the development of these platforms must be reliable, safe, fast, and cost effective. To practically validate the control system, the controllers should be implemented in an on-board micro-controller platform; whereas, the vehicle model should be realized in a real-time emulator that behaves like the real vehicle. In this paper, we propose a signal hardware-in-the-loop simulation system for electric vehicles that are driven by four independent electric motors installed in wheels (in-wheel motor). The system is elaborately built on the basis of longitudinal, lateral, and yaw dynamics, as well as kinematic and position models, of which the characteristics are complete and comprehensive. The performance of the signal hardware-in-the-loop system is evaluated by various open-loop testing scenarios and by validation of a representative closed-loop optimal force distribution control. The proposed system can be applied for researches on active safety system of electric vehicles, including traction, braking control, force/torque distribution strategy, and electronic stability program.

Suggested Citation

  • Thanh Vo-Duy & Minh C. Ta & Bảo-Huy Nguyễn & João Pedro F. Trovão, 2020. "Experimental Platform for Evaluation of On-Board Real-Time Motion Controllers for Electric Vehicles," Energies, MDPI, vol. 13(23), pages 1-28, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6448-:d:457549
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6448/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6448/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yulin Yan & Chunguang Liu & Xiaojun Ma & Yunyin Zhang, 2019. "Hardware-in-loop real-time simulation of electrical vehicle using multi-simulation platform based on data fusion approach," International Journal of Distributed Sensor Networks, , vol. 15(4), pages 15501477198, April.
    2. Seung-Yun Baek & Yeon-Soo Kim & Wan-Soo Kim & Seung-Min Baek & Yong-Joo Kim, 2020. "Development and Verification of a Simulation Model for 120 kW Class Electric AWD (All-Wheel-Drive) Tractor during Driving Operation," Energies, MDPI, vol. 13(10), pages 1-15, May.
    3. Jinhyun Park & In Gyu Jang & Sung-Ho Hwang, 2018. "Torque Distribution Algorithm for an Independently Driven Electric Vehicle Using a Fuzzy Control Method: Driving Stability and Efficiency," Energies, MDPI, vol. 11(12), pages 1-22, December.
    4. Jie Tian & Jun Tong & Shi Luo, 2018. "Differential Steering Control of Four-Wheel Independent-Drive Electric Vehicles," Energies, MDPI, vol. 11(11), pages 1-18, October.
    5. Hongwen He & Jiankun Peng & Rui Xiong & Hao Fan, 2014. "An Acceleration Slip Regulation Strategy for Four-Wheel Drive Electric Vehicles Based on Sliding Mode Control," Energies, MDPI, vol. 7(6), pages 1-16, June.
    6. Cheng Lin & Zhifeng Xu, 2015. "Wheel Torque Distribution of Four-Wheel-Drive Electric Vehicles Based on Multi-Objective Optimization," Energies, MDPI, vol. 8(5), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hoai-Linh T. Nguyen & Bảo-Huy Nguyễn & Thanh Vo-Duy & João Pedro F. Trovão, 2021. "A Comparative Study of Adaptive Filtering Strategies for Hybrid Energy Storage Systems in Electric Vehicles," Energies, MDPI, vol. 14(12), pages 1-23, June.
    2. João Pedro F. Trovão & Minh Cao Ta, 2022. "Electric Vehicle Efficient Power and Propulsion Systems," Energies, MDPI, vol. 15(11), pages 1-4, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ran Chen & Zongxia Jiao & Liang Yan & Yaoxing Shang & Shuai Wu, 2019. "Nonlinear Synchronous Control for H-Type Gantry Stage Used in Electric Vehicles Manufacturing," Energies, MDPI, vol. 12(12), pages 1-16, June.
    2. Kanghyun Nam & Yoichi Hori & Choonyoung Lee, 2015. "Wheel Slip Control for Improving Traction-Ability and Energy Efficiency of a Personal Electric Vehicle," Energies, MDPI, vol. 8(7), pages 1-21, July.
    3. Cheng Lin & Zhifeng Xu, 2015. "Wheel Torque Distribution of Four-Wheel-Drive Electric Vehicles Based on Multi-Objective Optimization," Energies, MDPI, vol. 8(5), pages 1-17, April.
    4. Francesco Mocera & Aurelio Somà & Salvatore Martelli & Valerio Martini, 2023. "Trends and Future Perspective of Electrification in Agricultural Tractor-Implement Applications," Energies, MDPI, vol. 16(18), pages 1-36, September.
    5. Miranda, Matheus H.R. & Silva, Fabrício L. & Lourenço, Maria A.M. & Eckert, Jony J. & Silva, Ludmila C.A., 2022. "Electric vehicle powertrain and fuzzy controller optimization using a planar dynamics simulation based on a real-world driving cycle," Energy, Elsevier, vol. 238(PC).
    6. Junnian Wang & Siwen Lv & Nana Sun & Shoulin Gao & Wen Sun & Zidong Zhou, 2021. "Torque Vectoring Control of RWID Electric Vehicle for Reducing Driving-Wheel Slippage Energy Dissipation in Cornering," Energies, MDPI, vol. 14(23), pages 1-16, December.
    7. Jiongjiong Cai & Peng Ke & Xiao Qu & Zihui Wang, 2022. "Research on the Design of Auxiliary Generator for Enthalpy Reduction and Steady Speed Scroll Expander," Energies, MDPI, vol. 15(9), pages 1-17, April.
    8. Xudong Zhang & Dietmar Göhlich, 2017. "Integrated Traction Control Strategy for Distributed Drive Electric Vehicles with Improvement of Economy and Longitudinal Driving Stability," Energies, MDPI, vol. 10(1), pages 1-18, January.
    9. Wanke Cao & Helin Liu & Cheng Lin & Yuhua Chang & Zhiyin Liu & Antoni Szumanowski, 2017. "Co-Design Based Lateral Motion Control of All-Wheel-Independent-Drive Electric Vehicles with Network Congestion," Energies, MDPI, vol. 10(10), pages 1-16, October.
    10. Yi Du & Jiayan Zhou & Zhuofan He & Yandong Sun & Ming Kong, 2022. "A Dual-Harmonic Pole-Changing Motor with Split Permanent Magnet Pole," Energies, MDPI, vol. 15(20), pages 1-14, October.
    11. Rufei Hou & Li Zhai & Tianmin Sun, 2018. "Steering Stability Control for a Four Hub-Motor Independent-Drive Electric Vehicle with Varying Adhesion Coefficient," Energies, MDPI, vol. 11(9), pages 1-17, September.
    12. Jiangyi Lv & Hongwen He & Wei Liu & Yong Chen & Fengchun Sun, 2019. "Vehicle Velocity Estimation Fusion with Kinematic Integral and Empirical Correction on Multi-Timescales," Energies, MDPI, vol. 12(7), pages 1-24, April.
    13. Zhun Cheng & Zhixiong Lu, 2022. "Regression-Based Correction and I-PSO-Based Optimization of HMCVT’s Speed Regulating Characteristics for Agricultural Machinery," Agriculture, MDPI, vol. 12(5), pages 1-18, April.
    14. Szilárd Czibere & Ádám Domina & Ádám Bárdos & Zsolt Szalay, 2021. "Model Predictive Controller Design for Vehicle Motion Control at Handling Limits in Multiple Equilibria on Varying Road Surfaces," Energies, MDPI, vol. 14(20), pages 1-17, October.
    15. Zhaolong Zhang & Yuan Zou & Xudong Zhang & Zhifeng Xu & Han Wang, 2020. "Driver Model Based on Optimized Calculation and Functional Safety Simulation," Energies, MDPI, vol. 13(24), pages 1-12, December.
    16. Lingfei Wu & Jinfang Gou & Lifang Wang & Junzhi Zhang, 2015. "Acceleration Slip Regulation Strategy for Distributed Drive Electric Vehicles with Independent Front Axle Drive Motors," Energies, MDPI, vol. 8(5), pages 1-30, May.
    17. Xudong Zhang & Dietmar Göhlich, 2017. "A hierarchical estimator development for estimation of tire-road friction coefficient," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-21, February.
    18. Huajun Chen & Meng Wang & Xiangdong Ni & Wenqing Cai & Chunfa Zhong & Haoyun Ye & Yongqiang Zhao & Wenlong Pan & Yuangang Lin, 2023. "Design of Hydrostatic Power Shift Compound Drive System for Cotton Picker Experiment," Agriculture, MDPI, vol. 13(8), pages 1-19, August.
    19. Binh-Minh Nguyen & Hung Van Nguyen & Minh Ta-Cao & Michihiro Kawanishi, 2020. "Longitudinal Modelling and Control of In-Wheel-Motor Electric Vehicles as Multi-Agent Systems," Energies, MDPI, vol. 13(20), pages 1-28, October.
    20. Zhun Cheng & Huadong Zhou & Zhixiong Lu, 2022. "A Novel 10-Parameter Motor Efficiency Model Based on I-SA and Its Comparative Application of Energy Utilization Efficiency in Different Driving Modes for Electric Tractor," Agriculture, MDPI, vol. 12(3), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6448-:d:457549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.