IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i3p1865-1881d46563.html
   My bibliography  Save this article

Nanoparticle Filtration Characteristics of Advanced Metal Foam Media for a Spark Ignition Direct Injection Engine in Steady Engine Operating Conditions and Vehicle Test Modes

Author

Listed:
  • Cha-Lee Myung

    (School of Mechanical Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 136-701, Korea)

  • Juwon Kim

    (School of Mechanical Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 136-701, Korea)

  • Wonwook Jang

    (School of Mechanical Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 136-701, Korea)

  • Dongyoung Jin

    (School of Mechanical Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 136-701, Korea)

  • Simsoo Park

    (School of Mechanical Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 136-701, Korea)

  • Jeongmin Lee

    (Alantum Corporation, 8F, Starwood B/D, 5439-1, Sangdaewon 2-dong, Joongwon-gu, Seongnam-city, Gyonggi-do 462-819, Korea)

Abstract

In this study, the particle formation and reduction characteristics at the engine-out position, after a three-way catalyst (TWC) and a metal foam gasoline particulate filter (GPF), were evaluated for a gasoline direct-injection (GDI) engine under part-load operating conditions. The vehicle tests were performed under the Federal Test Procedure-75 (FTP-75) and the Highway Fuel Economy Test (HWFET) modes. Particle number (PN) concentrations, size distributions, and the filtering efficiency with the GPF were evaluated with a condensation particle counter (CPC) and a differential mobility spectrometer (DMS500). Under steady engine operating conditions, the PN concentrations at the engine-out position were 9.7 × 10 5 –2.5 × 10 6 N/cc. While, the PN concentrations after the GPF were 9.2 × 10 4 –3.5 × 10 5 N/cc, and the PN was reduced by 77%–96%. The PN filtering efficiency with the GPF-GDI vehicle reached approximately 58% in the FTP-75 and 62% in the HWFET mode. The PN concentration of the GPF-GDI vehicle was significantly reduced to 3.95 × 10 11 N/km for the FTP-75 and 8.86 × 10 10 N/km for the HWFET mode. The amount of nucleation mode particles below 23 nm was substantially reduced with the GPF-GDI vehicle. The fuel economy, CO 2 , and regulated emissions of the GPF-GDI vehicle were equivalent to those of the base GDI vehicle under the vehicle certification modes.

Suggested Citation

  • Cha-Lee Myung & Juwon Kim & Wonwook Jang & Dongyoung Jin & Simsoo Park & Jeongmin Lee, 2015. "Nanoparticle Filtration Characteristics of Advanced Metal Foam Media for a Spark Ignition Direct Injection Engine in Steady Engine Operating Conditions and Vehicle Test Modes," Energies, MDPI, vol. 8(3), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:3:p:1865-1881:d:46563
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/3/1865/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/3/1865/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Costagliola, M.A. & De Simio, L. & Iannaccone, S. & Prati, M.V., 2013. "Combustion efficiency and engine out emissions of a S.I. engine fueled with alcohol/gasoline blends," Applied Energy, Elsevier, vol. 111(C), pages 1162-1171.
    2. Gong, Changming & Huang, Kuo & Deng, Baoqing & Liu, Xunjun, 2011. "Catalyst light-off behavior of a spark-ignition LPG (liquefied petroleum gas) engine during cold start," Energy, Elsevier, vol. 36(1), pages 53-59.
    3. Bonatesta, F. & Chiappetta, E. & La Rocca, A., 2014. "Part-load particulate matter from a GDI engine and the connection with combustion characteristics," Applied Energy, Elsevier, vol. 124(C), pages 366-376.
    4. Kim, Jaehoon & Kim, Sangsin, 2015. "2012년 국회법 개정의 효과 연구 [A Study on the Effect of the 2012 National Assembly Act Amendment]," KDI Research Monographs, Korea Development Institute (KDI), volume 127, number v:2015-03(k):y:2015:p:1-1.
    5. Wu, Xuesong & Daniel, Ritchie & Tian, Guohong & Xu, Hongming & Huang, Zuohua & Richardson, Dave, 2011. "Dual-injection: The flexible, bi-fuel concept for spark-ignition engines fuelled with various gasoline and biofuel blends," Applied Energy, Elsevier, vol. 88(7), pages 2305-2314, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingfei Mu & Jonas Sjöblom & Nikhil Sharma & Henrik Ström & Xinghu Li, 2019. "Experimental Study on the Flow Field of Particles Deposited on a Gasoline Particulate Filter," Energies, MDPI, vol. 12(14), pages 1-18, July.
    2. Jinxi Zhou & Song Zhou & Yuanqing Zhu, 2017. "Characterization of Particle and Gaseous Emissions from Marine Diesel Engines with Different Fuels and Impact of After-Treatment Technology," Energies, MDPI, vol. 10(8), pages 1-14, July.
    3. Mingfei Mu & Jonas Sjöblom & Henrik Ström & Xinghu Li, 2019. "Analysis of the Flow Field from Connection Cones to Monolith Reactors," Energies, MDPI, vol. 12(3), pages 1-20, January.
    4. Aidar Khairullin & Aigul Haibullina & Alex Sinyavin & Denis Balzamov & Vladimir Ilyin & Liliya Khairullina & Veronika Bronskaya, 2022. "Heat Transfer in 3D Laguerre–Voronoi Open-Cell Foams under Pulsating Flow," Energies, MDPI, vol. 15(22), pages 1-26, November.
    5. Mingfei Mu & Xinghu Li & Yong Qiu & Yang Shi, 2019. "Study on a New Gasoline Particulate Filter Structure Based on the Nested Cylinder and Diversion Channel Plug," Energies, MDPI, vol. 12(11), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xin & Ge, Yunshan & Zhang, Chuanzhen & Tan, Jianwei & Hao, Lijun & Liu, Jia & Gong, Huiming, 2016. "Effects of engine misfire on regulated, unregulated emissions from a methanol-fueled vehicle and its ozone forming potential," Applied Energy, Elsevier, vol. 177(C), pages 187-195.
    2. Cinzia Tornatore & Luca Marchitto & Maria Antonietta Costagliola & Gerardo Valentino, 2019. "Experimental Comparative Study on Performance and Emissions of E85 Adopting Different Injection Approaches in a Turbocharged PFI SI Engine," Energies, MDPI, vol. 12(8), pages 1-15, April.
    3. Wang, Xin & Ge, Yunshan & Liu, Linlin & Peng, Zihang & Hao, Lijun & Yin, Hang & Ding, Yan & Wang, Junfang, 2015. "Evaluation on toxic reduction and fuel economy of a gasoline direct injection- (GDI-) powered passenger car fueled with methanol–gasoline blends with various substitution ratios," Applied Energy, Elsevier, vol. 157(C), pages 134-143.
    4. Wang, Chongming & Xu, Hongming & Herreros, Jose Martin & Wang, Jianxin & Cracknell, Roger, 2014. "Impact of fuel and injection system on particle emissions from a GDI engine," Applied Energy, Elsevier, vol. 132(C), pages 178-191.
    5. Zhang, Bo & Sarathy, S. Mani, 2016. "Lifecycle optimized ethanol-gasoline blends for turbocharged engines," Applied Energy, Elsevier, vol. 181(C), pages 38-53.
    6. Kumar, T. Sathish & Ashok, B., 2021. "Critical review on combustion phenomena of low carbon alcohols in SI engine with its challenges and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    7. Myung, Cha-Lee & Choi, Kwanhee & Kim, Juwon & Lim, Yunsung & Lee, Jongtae & Park, Simsoo, 2012. "Comparative study of regulated and unregulated toxic emissions characteristics from a spark ignition direct injection light-duty vehicle fueled with gasoline and liquid phase LPG (liquefied petroleum ," Energy, Elsevier, vol. 44(1), pages 189-196.
    8. Lattimore, Thomas & Wang, Chongming & Xu, Hongming & Wyszynski, Miroslaw L. & Shuai, Shijin, 2016. "Investigation of EGR Effect on Combustion and PM Emissions in a DISI Engine," Applied Energy, Elsevier, vol. 161(C), pages 256-267.
    9. Wei, Haiqiao & Feng, Dengquan & Shu, Gequn & Pan, Mingzhang & Guo, Yubin & Gao, Dongzhi & Li, Wei, 2014. "Experimental investigation on the combustion and emissions characteristics of 2-methylfuran gasoline blend fuel in spark-ignition engine," Applied Energy, Elsevier, vol. 132(C), pages 317-324.
    10. Bomi Nomlala, 2021. "Financial Socialisation of Accounting Students in South Africa," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 10(2), pages 01-15, April.
    11. Jonathan Knuckey & Myunghee Kim, 2020. "The Politics of White Racial Identity and Vote Choice in the 2018 Midterm Elections," Social Science Quarterly, Southwestern Social Science Association, vol. 101(4), pages 1584-1599, July.
    12. Min Kwan Baek & Young Saing Kim & Eun Young Kim & Ae Jin Kim & Won-Jun Choi, 2016. "Health-Related Quality of Life in Korean Adults with Hearing Impairment: The Korea National Health and Nutrition Examination Survey 2010 to 2012," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-10, October.
    13. Nicole A. Cunningham, 2015. "Photothermal Therapy as an Alternative Treatment for the Clinical Management of Cancer," International Journal of Sciences, Office ijSciences, vol. 4(11), pages 30-32, November.
    14. Niki Koutrou & Athanasios (Sakis) Pappous & Anna Johnson, 2016. "Post-Event Volunteering Legacy: Did the London 2012 Games Induce a Sustainable Volunteer Engagement?," Sustainability, MDPI, vol. 8(12), pages 1-12, November.
    15. Raghda Abulsaoud Ahmed Younis, 2021. "Cognitive Diversity and Creativity: The Moderating Effect of Collaborative Climate," International Journal of Business and Management, Canadian Center of Science and Education, vol. 14(1), pages 159-159, July.
    16. Walid EL-Ansari & Christiane Stock, 2016. "Gender Differences in Self-Rated Health among University Students in England, Wales and Northern Ireland: Do Confounding Variables Matter?," Global Journal of Health Science, Canadian Center of Science and Education, vol. 8(11), pages 168-168, November.
    17. Wang, Zhi & Liu, Hui & Long, Yan & Wang, Jianxin & He, Xin, 2015. "Comparative study on alcohols–gasoline and gasoline–alcohols dual-fuel spark ignition (DFSI) combustion for high load extension and high fuel efficiency," Energy, Elsevier, vol. 82(C), pages 395-405.
    18. Obi K. Echendu & Imyhamy M. Dharmadasa, 2015. "Graded-Bandgap Solar Cells Using All-Electrodeposited ZnS, CdS and CdTe Thin-Films," Energies, MDPI, vol. 8(5), pages 1-20, May.
    19. Martin Gassebner & Jerg Gutmann & Stefan Voigt, 2016. "When to expect a coup d’état? An extreme bounds analysis of coup determinants," Public Choice, Springer, vol. 169(3), pages 293-313, December.
    20. Alessandro Pollini & Alessandro Caforio, 2021. "Participation and Iterative Experiments: Designing Alternative Futures with Migrants and Service Providers," Social Sciences, MDPI, vol. 10(10), pages 1-13, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:3:p:1865-1881:d:46563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.