IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i9p2246-d1644703.html
   My bibliography  Save this article

Hybrid Method for Oil Price Prediction Based on Feature Selection and XGBOOST-LSTM

Author

Listed:
  • Shucheng Lin

    (College of Management Science, Chengdu University of Technology, Chengdu 610059, China)

  • Yue Wang

    (College of Management Science, Chengdu University of Technology, Chengdu 610059, China)

  • Haocheng Wei

    (College of Management Science, Chengdu University of Technology, Chengdu 610059, China)

  • Xiaoyi Wang

    (College of Management Science, Chengdu University of Technology, Chengdu 610059, China)

  • Zhong Wang

    (College of Management Science, Chengdu University of Technology, Chengdu 610059, China)

Abstract

The accurate and stable prediction of crude oil prices holds significant value, providing insightful guidance for investors and decision-makers. The intricate interplay of factors influencing oil prices and the pronounced fluctuations present significant obstacles within the realm of oil price forecasting. This study introduces a novel hybrid model framework, distinct from the conventional methods, that integrates influencing factors for oil price prediction. First, using Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN) extract mode components from crude oil prices. Second, using the Adaptive Copula-based Feature Selection (ACBFS), rooted in Copula theory, facilitates the integration of the influencing factors; ACBFS enhances both accuracy and stability in feature selection, thereby amplifying predictive performance and interpretability. Third, low-frequency modes are predicted through an Attention Mechanism-based Long and Short-Term Memory Neural Network (AM-LSTM), optimized using Bayesian Optimization and Hyperband (BOHB). Conversely, high-frequency modes are forecasted using Extreme Gradient Boosting Models (XGboost). Finally, the error correction mechanism further enhances the predictive accuracy. The experimental results show that the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) of the proposed hybrid prediction framework are the lowest compared to the benchmark model, at 0.7333 and 1.1069, respectively, which proves that the designed prediction structure has better efficiency and higher accuracy and stability.

Suggested Citation

  • Shucheng Lin & Yue Wang & Haocheng Wei & Xiaoyi Wang & Zhong Wang, 2025. "Hybrid Method for Oil Price Prediction Based on Feature Selection and XGBOOST-LSTM," Energies, MDPI, vol. 18(9), pages 1-27, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2246-:d:1644703
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/9/2246/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/9/2246/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dash, Devi Prasad & Sethi, Narayan & Bal, Debi Prasad, 2018. "Is the demand for crude oil inelastic for India? Evidence from structural VAR analysis," Energy Policy, Elsevier, vol. 118(C), pages 552-558.
    2. Zhai, Dongsheng & Zhang, Tianrui & Liang, Guoqiang & Liu, Baoliu, 2025. "Research on crude oil futures price prediction methods: A perspective based on quantum deep learning," Energy, Elsevier, vol. 320(C).
    3. Mensi, Walid & Rehman, Mobeen Ur & Vo, Xuan Vinh, 2021. "Dynamic frequency relationships and volatility spillovers in natural gas, crude oil, gas oil, gasoline, and heating oil markets: Implications for portfolio management," Resources Policy, Elsevier, vol. 73(C).
    4. Saada Abba Abdullahi & Reza Kouhy & Zahid Muhammad, 2014. "Trading volume and return relationship in the crude oil futures markets," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 31(4), pages 426-438, September.
    5. Niu, Xinsong & Wang, Jiyang, 2019. "A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 241(C), pages 519-539.
    6. Wu, Chunying & Wang, Jianzhou & Hao, Yan, 2022. "Deterministic and uncertainty crude oil price forecasting based on outlier detection and modified multi-objective optimization algorithm," Resources Policy, Elsevier, vol. 77(C).
    7. Xie, Yiwei & Hu, Pingfang & Zhu, Na & Lei, Fei & Xing, Lu & Xu, Linghong & Sun, Qiming, 2020. "A hybrid short-term load forecasting model and its application in ground source heat pump with cooling storage system," Renewable Energy, Elsevier, vol. 161(C), pages 1244-1259.
    8. Nomikos, Nikos & Andriosopoulos, Kostas, 2012. "Modelling energy spot prices: Empirical evidence from NYMEX," Energy Economics, Elsevier, vol. 34(4), pages 1153-1169.
    9. repec:eme:sef000:sef-08-2012-0092 is not listed on IDEAS
    10. Askarzadeh, Alireza, 2014. "Comparison of particle swarm optimization and other metaheuristics on electricity demand estimation: A case study of Iran," Energy, Elsevier, vol. 72(C), pages 484-491.
    11. Waqas Ahmad & Muhammad Aamir & Umair Khalil & Muhammad Ishaq & Nadeem Iqbal & Mukhtaj Khan, 2021. "A New Approach for Forecasting Crude Oil Prices Using Median Ensemble Empirical Mode Decomposition and Group Method of Data Handling," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-12, May.
    12. Zhang, Zhikai & He, Mengxi & Zhang, Yaojie & Wang, Yudong, 2022. "Geopolitical risk trends and crude oil price predictability," Energy, Elsevier, vol. 258(C).
    13. Alameer, Zakaria & Fathalla, Ahmed & Li, Kenli & Ye, Haiwang & Jianhua, Zhang, 2020. "Multistep-ahead forecasting of coal prices using a hybrid deep learning model," Resources Policy, Elsevier, vol. 65(C).
    14. Jammazi, Rania & Aloui, Chaker, 2012. "Crude oil price forecasting: Experimental evidence from wavelet decomposition and neural network modeling," Energy Economics, Elsevier, vol. 34(3), pages 828-841.
    15. Akhter, Muhammad Naveed & Mekhilef, Saad & Mokhlis, Hazlie & Ali, Raza & Usama, Muhammad & Muhammad, Munir Azam & Khairuddin, Anis Salwa Mohd, 2022. "A hybrid deep learning method for an hour ahead power output forecasting of three different photovoltaic systems," Applied Energy, Elsevier, vol. 307(C).
    16. Peng, Lu & Wang, Lin & Xia, De & Gao, Qinglu, 2022. "Effective energy consumption forecasting using empirical wavelet transform and long short-term memory," Energy, Elsevier, vol. 238(PB).
    17. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2022. "Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Deep Residual model for short-term multi-step solar radiation prediction," Renewable Energy, Elsevier, vol. 190(C), pages 408-424.
    18. Abiad, Abdul & Qureshi, Irfan A., 2023. "The macroeconomic effects of oil price uncertainty," Energy Economics, Elsevier, vol. 125(C).
    19. Weihui Xu & Zhaoke Wang & Weishu Wang & Jian Zhao & Miaojia Wang & Qinbao Wang, 2024. "Short-Term Photovoltaic Output Prediction Based on Decomposition and Reconstruction and XGBoost under Two Base Learners," Energies, MDPI, vol. 17(4), pages 1-19, February.
    20. Huang, Lili & Wang, Jun, 2018. "Global crude oil price prediction and synchronization based accuracy evaluation using random wavelet neural network," Energy, Elsevier, vol. 151(C), pages 875-888.
    21. Quande Qin & Huangda He & Li Li & Ling-Yun He, 2020. "A Novel Decomposition-Ensemble Based Carbon Price Forecasting Model Integrated with Local Polynomial Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1249-1273, April.
    22. Guliyev, Hasraddin & Mustafayev, Eldayag, 2022. "Predicting the changes in the WTI crude oil price dynamics using machine learning models," Resources Policy, Elsevier, vol. 77(C).
    23. Wen, Jun & Zhao, Xin-Xin & Chang, Chun-Ping, 2021. "The impact of extreme events on energy price risk," Energy Economics, Elsevier, vol. 99(C).
    24. Soleimanzade, Mohammad Amin & Sadrzadeh, Mohtada, 2021. "Deep learning-based energy management of a hybrid photovoltaic-reverse osmosis-pressure retarded osmosis system," Applied Energy, Elsevier, vol. 293(C).
    25. Fan, Liwei & Pan, Sijia & Li, Zimin & Li, Huiping, 2016. "An ICA-based support vector regression scheme for forecasting crude oil prices," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 245-253.
    26. Zhou, Feite & Huang, Zhehao & Zhang, Changhong, 2022. "Carbon price forecasting based on CEEMDAN and LSTM," Applied Energy, Elsevier, vol. 311(C).
    27. Yahya, Muhammad & Kanjilal, Kakali & Dutta, Anupam & Uddin, Gazi Salah & Ghosh, Sajal, 2021. "Can clean energy stock price rule oil price? New evidences from a regime-switching model at first and second moments," Energy Economics, Elsevier, vol. 95(C).
    28. Saada Abba Abdullahi & Reza Kouhy & Zahid Muhammad, 2014. "Trading volume and return relationship in the crude oil futures markets," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 31(4), pages 426-438, September.
    29. Zhao, Dong & Sibt e-Ali, Muhammad & Omer Chaudhry, Muhammad & Ayub, Bakhtawer & Waqas, Muhammad & Ullah, Irfan, 2024. "Modeling the Nexus between geopolitical risk, oil price volatility and renewable energy investment; evidence from Chinese listed firms," Renewable Energy, Elsevier, vol. 225(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Chunying & Wang, Jianzhou & Hao, Yan, 2022. "Deterministic and uncertainty crude oil price forecasting based on outlier detection and modified multi-objective optimization algorithm," Resources Policy, Elsevier, vol. 77(C).
    2. Lu-Tao Zhao & Guan-Rong Zeng & Ling-Yun He & Ya Meng, 2020. "Forecasting Short-Term Oil Price with a Generalised Pattern Matching Model Based on Empirical Genetic Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1151-1169, April.
    3. Xu, Kunliang & Niu, Hongli, 2023. "Denoising or distortion: Does decomposition-reconstruction modeling paradigm provide a reliable prediction for crude oil price time series?," Energy Economics, Elsevier, vol. 128(C).
    4. Li, Jinchao & Zhu, Shaowen & Wu, Qianqian, 2019. "Monthly crude oil spot price forecasting using variational mode decomposition," Energy Economics, Elsevier, vol. 83(C), pages 240-253.
    5. Zhao, Zhengling & Sun, Shaolong & Sun, Jingyun & Wang, Shouyang, 2024. "A novel hybrid model with two-layer multivariate decomposition for crude oil price forecasting," Energy, Elsevier, vol. 288(C).
    6. Hao, Jun & Feng, Qianqian & Yuan, Jiaxin & Sun, Xiaolei & Li, Jianping, 2022. "A dynamic ensemble learning with multi-objective optimization for oil prices prediction," Resources Policy, Elsevier, vol. 79(C).
    7. Yu, Lean & Wang, Zishu & Tang, Ling, 2015. "A decomposition–ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting," Applied Energy, Elsevier, vol. 156(C), pages 251-267.
    8. Lv, Sheng-Xiang & Wang, Lin, 2022. "Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization," Applied Energy, Elsevier, vol. 311(C).
    9. Jean-Michel Sahut & Petr Hajek & Vladimir Olej & Lubica Hikkerova, 2025. "The role of news-based sentiment in forecasting crude oil price during the Covid-19 pandemic," Annals of Operations Research, Springer, vol. 345(2), pages 861-884, February.
    10. Wang, Bin & Wang, Jun, 2020. "Energy futures and spots prices forecasting by hybrid SW-GRU with EMD and error evaluation," Energy Economics, Elsevier, vol. 90(C).
    11. Ding, Lili & Zhao, Zhongchao & Wang, Lei, 2022. "Probability density forecasts for natural gas demand in China: Do mixed-frequency dynamic factors matter?," Applied Energy, Elsevier, vol. 312(C).
    12. Jesús Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2024. "Predicting carbon and oil price returns using hybrid models based on machine and deep learning," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
    13. Erdinc Akyildirim & Oguzhan Cepni & Shaen Corbet & Gazi Salah Uddin, 2023. "Forecasting mid-price movement of Bitcoin futures using machine learning," Annals of Operations Research, Springer, vol. 330(1), pages 553-584, November.
    14. Gawusu, Sidique & Zhang, Xiaobing & Yakubu, Sufyan & Debrah, Seth Kofi & Das, Oisik & Bundela, Nishant Singh, 2025. "Optimizing solar photovoltaic system performance: Insights and strategies for enhanced efficiency," Energy, Elsevier, vol. 319(C).
    15. Kim, Jong-Min & Jung, Hojin, 2017. "Can asymmetric conditional volatility imply asymmetric tail dependence?," Economic Modelling, Elsevier, vol. 64(C), pages 409-418.
    16. Yin, Hao & Yin, Yiding & Li, Hanhong & Zhu, Jianbin & Xian, Zikang & Tang, Yanshu & Xiao, Liexi & Rong, Jiayu & Li, Chen & Zhang, Haitao & Xie, Zhifeng & Meng, Anbo, 2025. "Carbon emissions trading price forecasting based on temporal-spatial multidimensional collaborative attention network and segment imbalance regression," Applied Energy, Elsevier, vol. 377(PA).
    17. Huang, Zhuo & Ye, Chengfang & Lai, Fujun & Li, Yunzhong & Li, Xiaofan, 2024. "Dancing between threats and conflicts: How Chinese energy companies invest amidst global geopolitical risks," Energy Economics, Elsevier, vol. 139(C).
    18. Patra, Saswat, 2024. "An empirical analysis of the volume-volatility nexus in crude oil markets under structural breaks: Implications for forecasting," International Review of Economics & Finance, Elsevier, vol. 94(C).
    19. Zhang, Tingting & Tang, Zhenpeng & Wu, Junchuan & Du, Xiaoxu & Chen, Kaijie, 2021. "Multi-step-ahead crude oil price forecasting based on two-layer decomposition technique and extreme learning machine optimized by the particle swarm optimization algorithm," Energy, Elsevier, vol. 229(C).
    20. Zhang, Jiahao & Chen, Xiaodan & Wei, Yu & Bai, Lan, 2023. "Does the connectedness among fossil energy returns matter for renewable energy stock returns? Fresh insights from the Cross-Quantilogram analysis," International Review of Financial Analysis, Elsevier, vol. 88(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2246-:d:1644703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.