IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i9p2230-d1644248.html
   My bibliography  Save this article

Performance Enhancement of a Solar Air Heater Equipped with a Tree-like Fractal Cylindrical Pin for Drying Applications: Tests Under Real Climatic Conditions

Author

Listed:
  • Chotiwut Prasopsuk

    (Thermal and Fluid Laboratory (TFL), Department of Teacher Training in Mechanical Engineering, King Mongkut’s University of Technology North Bangkok, 1518 Phacharat 1 Rd., Bang Sue, Bangkok 10800, Thailand)

  • Kittiwoot Sutthivirode

    (Thermal and Fluid Laboratory (TFL), Department of Teacher Training in Mechanical Engineering, King Mongkut’s University of Technology North Bangkok, 1518 Phacharat 1 Rd., Bang Sue, Bangkok 10800, Thailand)

  • Tongchana Thongtip

    (Thermal and Fluid Laboratory (TFL), Department of Teacher Training in Mechanical Engineering, King Mongkut’s University of Technology North Bangkok, 1518 Phacharat 1 Rd., Bang Sue, Bangkok 10800, Thailand)

Abstract

This paper reports the improved thermal and drying performance of a solar air heater powered by real solar irradiance and equipped with a tree-like fractal-based cylindrical pin (SAH-TFCP) as a turbulator for drying applications. The main purpose of this work is to demonstrate the SAH-TFCP’s improvement potential based on its thermal and drying performance as compared with a conventional solar air heater based on a flat-plate absorber (SAH-FP). The test was implemented based on solar time from 8:30 to 17:30 under Thailand’s climatic conditions at a latitude angle of 14° and a longitude angle of 100°. Turmeric slices were used to evaluate the SAH’s drying performance. The thermal efficiency, moisture content wet basis (MC wb ), drying rate (DR), and drying efficiency were measured as parameters of interest to assess the improvement potential of the SAH-TFCP over the SAH-FP. The results indicate that the SAH-TFCP provides better thermal and drying performance than the SAH-FP. A higher flow rate yields a higher thermal efficiency and a greater improvement potential. The improvement potential is around 44–85%. The drying efficiency of the SAH-TFCP is always higher than that of the SAH-FP and has an improvement potential of 32–44%, depending on the airflow rate.

Suggested Citation

  • Chotiwut Prasopsuk & Kittiwoot Sutthivirode & Tongchana Thongtip, 2025. "Performance Enhancement of a Solar Air Heater Equipped with a Tree-like Fractal Cylindrical Pin for Drying Applications: Tests Under Real Climatic Conditions," Energies, MDPI, vol. 18(9), pages 1-25, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2230-:d:1644248
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/9/2230/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/9/2230/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Camilo Ramirez & Mario Palacio & Mauricio Carmona, 2020. "Reduced Model and Comparative Analysis of the Thermal Performance of Indirect Solar Dryer with and without PCM," Energies, MDPI, vol. 13(20), pages 1-18, October.
    2. Dong, Zhimin & Liu, Peng & Xiao, Hui & Liu, Zhichun & Liu, Wei, 2021. "A study on heat transfer enhancement for solar air heaters with ripple surface," Renewable Energy, Elsevier, vol. 172(C), pages 477-487.
    3. Junichiro Matsunaga & Koki Kikuta & Hideki Hirakawa & Keita Mizuno & Masaki Tajima & Motoya Hayashi & Akira Fukushima, 2021. "An Assessment of Heating Load Reduction by a Solar Air Heater in a Residential Passive Ventilation System," Energies, MDPI, vol. 14(22), pages 1-12, November.
    4. Tabish Alam & Chandan Swaroop Meena & Nagesh Babu Balam & Ashok Kumar & Raffaello Cozzolino, 2021. "Thermo-Hydraulic Performance Characteristics and Optimization of Protrusion Rib Roughness in Solar Air Heater," Energies, MDPI, vol. 14(11), pages 1-19, May.
    5. Varun Pratap Singh & Siddharth Jain & Ashish Karn & Ashwani Kumar & Gaurav Dwivedi & Chandan Swaroop Meena & Nitesh Dutt & Aritra Ghosh, 2022. "Recent Developments and Advancements in Solar Air Heaters: A Detailed Review," Sustainability, MDPI, vol. 14(19), pages 1-55, September.
    6. Wengang Hao & Shuonan Liu & Baoqi Mi & Yanhua Lai, 2020. "Mathematical Modeling and Performance Analysis of a New Hybrid Solar Dryer of Lemon Slices for Controlling Drying Temperature," Energies, MDPI, vol. 13(2), pages 1-23, January.
    7. Abubakar, S. & Umaru, S. & Kaisan, M.U. & Umar, U.A. & Ashok, B. & Nanthagopal, K., 2018. "Development and performance comparison of mixed-mode solar crop dryers with and without thermal storage," Renewable Energy, Elsevier, vol. 128(PA), pages 285-298.
    8. Zhang, Chengbin & Li, Jie & Chen, Yongping, 2020. "Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins," Applied Energy, Elsevier, vol. 259(C).
    9. Hamed Karami & Mohammad Kaveh & Iman Golpour & Esmail Khalife & Robert Rusinek & Bohdan Dobrzański & Marek Gancarz, 2021. "Thermodynamic Evaluation of the Forced Convective Hybrid-Solar Dryer during Drying Process of Rosemary ( Rosmarinus officinalis L.) Leaves," Energies, MDPI, vol. 14(18), pages 1-17, September.
    10. Zuhair Qamar & Anjum Munir & Timothy Langrish & Abdul Ghafoor & Muhammad Tahir, 2023. "Experimental and Numerical Simulations of a Solar Air Heater for Maximal Value Addition to Agricultural Products," Agriculture, MDPI, vol. 13(2), pages 1-17, February.
    11. Saxena, Abhishek & Varun, & El-Sebaii, A.A., 2015. "A thermodynamic review of solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 863-890.
    12. Hassan, Hamdy & Abo-Elfadl, Saleh & El-Dosoky, M.F., 2020. "An experimental investigation of the performance of new design of solar air heater (tubular)," Renewable Energy, Elsevier, vol. 151(C), pages 1055-1066.
    13. Krzysztof Sornek & Karolina Papis-Frączek, 2022. "Development and Tests of the Solar Air Heater with Thermal Energy Storage," Energies, MDPI, vol. 15(18), pages 1-20, September.
    14. Anil Singh Yadav & Tabish Alam & Gaurav Gupta & Rajiv Saxena & Naveen Kumar Gupta & K. Viswanath Allamraju & Rahul Kumar & Neeraj Sharma & Abhishek Sharma & Utkarsh Pandey & Yogesh Agrawal, 2022. "A Numerical Investigation of an Artificially Roughened Solar Air Heater," Energies, MDPI, vol. 15(21), pages 1-27, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khanlari, Ataollah & Tuncer, Azim Doğuş & Sözen, Adnan & Aytaç, İpek & Çiftçi, Erdem & Variyenli, Halil İbrahim, 2022. "Energy and exergy analysis of a vertical solar air heater with nano-enhanced absorber coating and perforated baffles," Renewable Energy, Elsevier, vol. 187(C), pages 586-602.
    2. Karmveer & Naveen Kumar Gupta & Tabish Alam & Raffaello Cozzolino & Gino Bella, 2022. "A Descriptive Review to Access the Most Suitable Rib’s Configuration of Roughness for the Maximum Performance of Solar Air Heater," Energies, MDPI, vol. 15(8), pages 1-46, April.
    3. G. K. Pramod & U. C. Arunachala & N. Madhwesh & M. S. Manjunath, 2025. "A comprehensive review on the effect of turbulence promoters on heat transfer augmentation of solar air heater and the evaluation of thermo-hydraulic performance using metaheuristic optimization algor," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(5), pages 9873-9922, May.
    4. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    6. Tuncer, Azim Doğuş & Khanlari, Ataollah, 2023. "Improving the performance of a triple-flow solar air collector using recyclable aluminum cans as extended heat transfer surfaces: An energetic, exergetic, economic and environmental survey," Energy, Elsevier, vol. 282(C).
    7. Famiglietti, Antonio & Lecuona, Antonio, 2024. "Energetic and economic analysis of a novel concentrating solar air heater using linear Fresnel collector for industrial process heat," Renewable Energy, Elsevier, vol. 236(C).
    8. Sergio L. González-González & Ana Tejero-González & Francisco J. Rey-Martínez & Manuel Andrés-Chicote, 2017. "Alternative for Summer Use of Solar Air Heaters in Existing Buildings," Energies, MDPI, vol. 10(7), pages 1-15, July.
    9. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    10. Chandan Swaroop Meena & Binju P Raj & Lohit Saini & Nehul Agarwal & Aritra Ghosh, 2021. "Performance Optimization of Solar-Assisted Heat Pump System for Water Heating Applications," Energies, MDPI, vol. 14(12), pages 1-17, June.
    11. Roozbeh Vaziri & Akeem Adeyemi Oladipo & Mohsen Sharifpur & Rani Taher & Mohammad Hossein Ahmadi & Alibek Issakhov, 2021. "Efficiency Enhancement in Double-Pass Perforated Glazed Solar Air Heaters with Porous Beds: Taguchi-Artificial Neural Network Optimization and Cost–Benefit Analysis," Sustainability, MDPI, vol. 13(21), pages 1-18, October.
    12. Vyas, Sagar & Sharma, Amit Kumar & Rai, Anant Kumar, 2024. "Double pass solar air heater with aerofoil and bio-inspired fins: A numerical analysis of thermohydraulic performance," Energy, Elsevier, vol. 311(C).
    13. Zhao, Kai & Tian, Zhenyu & Zhang, Jinrui & Lu, Buchu & Hao, Yong, 2023. "Methanol steam reforming reactor with fractal tree-shaped structures for photovoltaic–thermochemical hybrid power generation," Applied Energy, Elsevier, vol. 330(PB).
    14. Maurya, Om Kapoor & Ekka, Jasinta Poonam & Kumar, Dhananjay & Dewangan, Disha & Singh, Adarsh, 2023. "Experimental and numerical methods for the performance analysis of a tubular three-pass solar air heater," Energy, Elsevier, vol. 283(C).
    15. Josivan Leite Alves & Rachel Perez Palha & Adiel Teixeira de Almeida Filho, 2025. "BIM-Based Framework for Photovoltaic Systems: Advancing Technologies, Overcoming Challenges, and Enhancing Sustainable Building Performance," Sustainability, MDPI, vol. 17(8), pages 1-41, April.
    16. Tian, Yang & Ji, Mingxi & Qin, Xinliang & Yang, Chun & Liu, Xianglei, 2024. "Self-growing bionic leaf-vein fins for high-power-density and high-efficiency latent heat thermal energy storage," Energy, Elsevier, vol. 309(C).
    17. Abidin Kemeç & Ayşenur Tarakcıoglu Altınay, 2023. "Sustainable Energy Research Trend: A Bibliometric Analysis Using VOSviewer, RStudio Bibliometrix, and CiteSpace Software Tools," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    18. Hosseinkhani, A. & Gandjalikhan Nassab, S.A., 2024. "Study of gas radiation effect on the performance of single-pass solar heaters with an air gap," Energy, Elsevier, vol. 294(C).
    19. Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    20. Zheng, Wandong & Li, Bojia & Zhang, Huan & You, Shijun & Li, Ying & Ye, Tianzhen, 2016. "Thermal characteristics of a glazed transpired solar collector with perforating corrugated plate in cold regions," Energy, Elsevier, vol. 109(C), pages 781-790.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2230-:d:1644248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.