IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6583-d910353.html
   My bibliography  Save this article

Development and Tests of the Solar Air Heater with Thermal Energy Storage

Author

Listed:
  • Krzysztof Sornek

    (Department of Sustainable Energy Development, Faculty of Energy and Fuels, AGH University of Science and Technology, Mickiewicza Ave. 30, 30-059 Krakow, Poland)

  • Karolina Papis-Frączek

    (Department of Sustainable Energy Development, Faculty of Energy and Fuels, AGH University of Science and Technology, Mickiewicza Ave. 30, 30-059 Krakow, Poland)

Abstract

Passive solutions in buildings have recently been rediscovered because they allow the rational use of solar radiation, which promotes energy savings. Thermal energy gained from the sun may be stored in the form of sensible heat in accumulative solid materials in a building envelope. This paper proposes an innovative solar air heater that captures and accumulates solar energy during the day and releases it during the night. The analyzed system is based on inexpensive ceramic modules, which can be used to construct thermal storage walls or solar chimneys in modern buildings. Both configurations have been tested experimentally and by a numerical model in ArCADia BIM software. Experiments have been carried out in laboratory conditions using a specially developed prototype. Among other parameters, power transferred from the solar air heater to the ventilation air in different conditions has been analyzed. When airflow was set to 150 m 3 /h, the maximum power observed under stable working conditions was approx. 355.0 W when the developed solar air heater operated as the solar chimney, and approx. 165.0 W when it operated as the solar thermal wall. When airflow was set to 200 m 3 /h, the maximum power was approx. 385.0 W. Experimental results have been used to calculate the efficiency of the solar air heater in real conditions. The total efficiency in the case of the solar chimney was estimated as 0.25, while in the case of the thermal wall it was estimated as 0.78, which resulted in an annual reduction in energy usage at a level of 190.7 kWh and 556.1 kWh, respectively (4.8 and 14.0%). In practice, these values can be significantly higher due to the possibility of increasing the length and shape of the accumulation heat exchanger.

Suggested Citation

  • Krzysztof Sornek & Karolina Papis-Frączek, 2022. "Development and Tests of the Solar Air Heater with Thermal Energy Storage," Energies, MDPI, vol. 15(18), pages 1-20, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6583-:d:910353
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6583/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6583/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Duan, Shuangping & Wang, Lin & Zhao, Zhiqiang & Zhang, Chengwang, 2021. "Experimental study on thermal performance of an integrated PCM Trombe wall," Renewable Energy, Elsevier, vol. 163(C), pages 1932-1941.
    2. Rabani, Mehran & Kalantar, Vali & Rabani, Mehrdad, 2017. "Heat transfer analysis of a Trombe wall with a projecting channel design," Energy, Elsevier, vol. 134(C), pages 943-950.
    3. Lin, Yuan & Ji, Jie & Lu, Xiangyou & Luo, Kun & Zhou, Fan & Ma, Yang, 2019. "Thermal and electrical behavior of built-middle photovoltaic integrated Trombe wall: Experimental and numerical study," Energy, Elsevier, vol. 189(C).
    4. Krzysztof Sornek & Wojciech Goryl & Rafał Figaj & Gabriela Dąbrowska & Joanna Brezdeń, 2022. "Development and Tests of the Water Cooling System Dedicated to Photovoltaic Panels," Energies, MDPI, vol. 15(16), pages 1-16, August.
    5. Rabani, Mehran, 2022. "Experimental comparison of energy and exergy analysis of a new designed and a Normal Trombe wall," Energy, Elsevier, vol. 260(C).
    6. Karolina Papis-Frączek & Krzysztof Sornek, 2022. "A Review on Heat Extraction Devices for CPVT Systems with Active Liquid Cooling," Energies, MDPI, vol. 15(17), pages 1-49, August.
    7. Hami, K. & Draoui, B. & Hami, O., 2012. "The thermal performances of a solar wall," Energy, Elsevier, vol. 39(1), pages 11-16.
    8. Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abidin Kemeç & Ayşenur Tarakcıoglu Altınay, 2023. "Sustainable Energy Research Trend: A Bibliometric Analysis Using VOSviewer, RStudio Bibliometrix, and CiteSpace Software Tools," Sustainability, MDPI, vol. 15(4), pages 1-21, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Dengjia & Hu, Liang & Du, Hu & Liu, Yanfeng & Huang, Jianxiang & Xu, Yanchao & Liu, Jiaping, 2020. "Classification, experimental assessment, modeling methods and evaluation metrics of Trombe walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    2. Wang, Lin & Zhou, Jinzhi & Bisengimana, Emmanuel & Ji, Yasheng & Zhong, Wei & Yuan, Yanping & Lu, Lin, 2023. "Numerical study on the thermal and electrical performance of a novel MCHP PV-Trombe wall system," Energy, Elsevier, vol. 269(C).
    3. Saadatian, Omidreza & Sopian, K. & Lim, C.H. & Asim, Nilofar & Sulaiman, M.Y., 2012. "Trombe walls: A review of opportunities and challenges in research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6340-6351.
    4. Jerzy Szyszka, 2022. "From Direct Solar Gain to Trombe Wall: An Overview on Past, Present and Future Developments," Energies, MDPI, vol. 15(23), pages 1-25, November.
    5. Li, Ao & Duan, Shuangping & Han, Rubing & Wang, Chaoyu, 2022. "Investigation on the dynamic thermal storage/release of the integrated PCM solar wall embedded with an evaporator," Renewable Energy, Elsevier, vol. 200(C), pages 1506-1516.
    6. Zhu, Na & Li, Shanshan & Hu, Pingfang & Lei, Fei & Deng, Renjie, 2019. "Numerical investigations on performance of phase change material Trombe wall in building," Energy, Elsevier, vol. 187(C).
    7. Qingsong Ma & Hiroatsu Fukuda & Takumi Kobatake & Myonghyang Lee, 2017. "Study of a Double-Layer Trombe Wall Assisted by a Temperature-Controlled DC Fan for Heating Seasons," Sustainability, MDPI, vol. 9(12), pages 1-12, November.
    8. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    9. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    10. Dutil, Yvan & Rousse, Daniel R. & Salah, Nizar Ben & Lassue, Stéphane & Zalewski, Laurent, 2011. "A review on phase-change materials: Mathematical modeling and simulations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 112-130, January.
    11. Gholamibozanjani, Gohar & Farid, Mohammed, 2020. "A comparison between passive and active PCM systems applied to buildings," Renewable Energy, Elsevier, vol. 162(C), pages 112-123.
    12. Hu, Nan & Li, Zi-Rui & Xu, Zhe-Wen & Fan, Li-Wu, 2022. "Rapid charging for latent heat thermal energy storage: A state-of-the-art review of close-contact melting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    13. Jiang, Fuyun & Wang, Xiaodong & Wu, Dezhen, 2016. "Magnetic microencapsulated phase change materials with an organo-silica shell: Design, synthesis and application for electromagnetic shielding and thermal regulating polyimide films," Energy, Elsevier, vol. 98(C), pages 225-239.
    14. Thi Kim Tuoi, Truong & Van Toan, Nguyen & Ono, Takahito, 2022. "Self-powered wireless sensing system driven by daily ambient temperature energy harvesting," Applied Energy, Elsevier, vol. 311(C).
    15. Bąk, Agnieszka & Pławecka, Kinga & Bazan, Patrycja & Łach, Michał, 2023. "Influence of the addition of phase change materials on thermal insulation properties of foamed geopolymer structures based on fly ash," Energy, Elsevier, vol. 278(C).
    16. Chi, Fang'ai & Xu, Liming & Peng, Changhai, 2020. "Integration of completely passive cooling and heating systems with daylighting function into courtyard building towards energy saving," Applied Energy, Elsevier, vol. 266(C).
    17. Bal, Lalit M. & Satya, Santosh & Naik, S.N., 2010. "Solar dryer with thermal energy storage systems for drying agricultural food products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2298-2314, October.
    18. Gunjo, Dawit Gudeta & Jena, Smruti Ranjan & Mahanta, Pinakeswar & Robi, P.S., 2018. "Melting enhancement of a latent heat storage with dispersed Cu, CuO and Al2O3 nanoparticles for solar thermal application," Renewable Energy, Elsevier, vol. 121(C), pages 652-665.
    19. Li, Zhenpeng & Ma, Tao & Zhao, Jiaxin & Song, Aotian & Cheng, Yuanda, 2019. "Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material," Energy, Elsevier, vol. 178(C), pages 471-486.
    20. Yuan, Yanping & Zhang, Nan & Li, Tianyu & Cao, Xiaoling & Long, Weiyue, 2016. "Thermal performance enhancement of palmitic-stearic acid by adding graphene nanoplatelets and expanded graphite for thermal energy storage: A comparative study," Energy, Elsevier, vol. 97(C), pages 488-497.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6583-:d:910353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.