IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i8p2072-d1636777.html
   My bibliography  Save this article

Assessment of Charge Dilution Strategies to Reduce Fuel Consumption in Natural Gas-Fuelled Heavy-Duty Spark Ignition Engines

Author

Listed:
  • Davide Di Domenico

    (National Research Council—Institute of Sciences and Technologies for Sustainable Energy and Mobility (CNR-STEMS), 80125 Naples, Italy)

  • Pierpaolo Napolitano

    (National Research Council—Institute of Sciences and Technologies for Sustainable Energy and Mobility (CNR-STEMS), 80125 Naples, Italy)

  • Dario Di Maio

    (National Research Council—Institute of Sciences and Technologies for Sustainable Energy and Mobility (CNR-STEMS), 80125 Naples, Italy)

  • Carlo Beatrice

    (National Research Council—Institute of Sciences and Technologies for Sustainable Energy and Mobility (CNR-STEMS), 80125 Naples, Italy)

Abstract

The need to decarbonize the road transport sector is driving the evaluation of alternative solutions. From a long-term perspective, biomethane and e-methane are particularly attractive as green energy carriers and a part of the solutions for the sustainable freight on-road transport, as they offer significant CO 2 -equivalent emissions savings in a net Well-to-Wheel assessment. However, to make methane-fuelled spark ignition (SI) heavy-duty (HD) engines competitive in the market, their efficiency must be comparable to the top-performing diesel applications that dominate the sector. To this end, dilution techniques such as exhaust gas recirculation (EGR) or lean air–fuel mixtures represent promising solutions. Within limits specific to the engine’s tolerance to the used strategy, charge dilution can improve thermal efficiency impact on the pumping and wall heat loss, and the heat capacity ratio (γ). However, their potential has never been explored in the case of methane SI HD engines characterized by a semi diesel-like combustion system architecture. This work presents an experimental study to characterize the energy and pollutant emission performance of a state-of-the-art SI HD gas single-cylinder engine (SCE) operating with EGR or with lean conditions. The engine type is representative of most HD powertrains used for long-haul purposes. The designed test plan is representative of the majority of on-road operating conditions providing an overview of the impact of the two dilution methods on the overall engine performance. The results highlight that both techniques are effective for achieving significant fuel savings, with lean combustion being more tolerable and yielding higher efficiency improvements (10% peak vs. 5% with EGR).

Suggested Citation

  • Davide Di Domenico & Pierpaolo Napolitano & Dario Di Maio & Carlo Beatrice, 2025. "Assessment of Charge Dilution Strategies to Reduce Fuel Consumption in Natural Gas-Fuelled Heavy-Duty Spark Ignition Engines," Energies, MDPI, vol. 18(8), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:2072-:d:1636777
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/8/2072/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/8/2072/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. O'Shea, Richard & Wall, David M. & Kilgallon, Ian & Browne, James D. & Murphy, Jerry D., 2017. "Assessing the total theoretical, and financially viable, resource of biomethane for injection to a natural gas network in a region," Applied Energy, Elsevier, vol. 188(C), pages 237-256.
    2. Jacek Leyko & Kamil Słobiński & Jarosław Jaworski & Grzegorz Mitukiewicz & Wissam Bou Nader & Damian Batory, 2023. "Study on SI Engine Operation Stability at Lean Condition—The Effect of a Small Amount of Hydrogen Addition," Energies, MDPI, vol. 16(18), pages 1-14, September.
    3. Henke, Ilaria & Cartenì, Armando & Beatrice, Carlo & Di Domenico, Davide & Marzano, Vittorio & Patella, Sergio Maria & Picone, Mariarosaria & Tocchi, Daniela & Cascetta, Ennio, 2024. "Fit for 2030? Possible scenarios of road transport demand, energy consumption and greenhouse gas emissions for Italy," Transport Policy, Elsevier, vol. 159(C), pages 67-82.
    4. Zhang, Qiang & Li, Menghan & Li, Guoxiang & Shao, Sidong & Li, Peixin, 2017. "Transient emission characteristics of a heavy-duty natural gas engine at stoichiometric operation with EGR and TWC," Energy, Elsevier, vol. 132(C), pages 225-237.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Padi, Richard Kingsley & Douglas, Sean & Murphy, Fionnuala, 2023. "Techno-economic potentials of integrating decentralised biomethane production systems into existing natural gas grids," Energy, Elsevier, vol. 283(C).
    2. O'Shea, R. & Wall, D.M. & Murphy, J.D., 2017. "An energy and greenhouse gas comparison of centralised biogas production with road haulage of pig slurry, and decentralised biogas production with biogas transportation in a low-pressure pipe network," Applied Energy, Elsevier, vol. 208(C), pages 108-122.
    3. Guerin, Turlough F., 2022. "Business model scaling can be used to activate and grow the biogas-to-grid market in Australia to decarbonise hard-to-abate industries: An application of entrepreneurial management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Catalano, Giovanni & D'Adamo, Idiano & Gastaldi, Massimo & Nizami, Abdul-Sattar & Ribichini, Marco, 2024. "Incentive policies in biomethane production toward circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    5. Grzegorz Piechota & Bartłomiej Igliński, 2021. "Biomethane in Poland—Current Status, Potential, Perspective and Development," Energies, MDPI, vol. 14(6), pages 1-32, March.
    6. Stürmer, Bernhard & Novakovits, Philipp & Luidolt, Alexander & Zweiler, Richard, 2019. "Potential of renewable methane by anaerobic digestion from existing plant stock – An economic reflection of an Austrian region," Renewable Energy, Elsevier, vol. 130(C), pages 920-929.
    7. Ó Céileachair, Dónal & O'Shea, Richard & Murphy, Jerry D. & Wall, David M., 2021. "Alternative energy management strategies for large industry in non-gas-grid regions using on-farm biomethane," Applied Energy, Elsevier, vol. 303(C).
    8. McCoy, Daire & Curtice, John, 2018. "Exploring the spatial and temporal determinants of gas central heating adoption," LSE Research Online Documents on Economics 86625, London School of Economics and Political Science, LSE Library.
    9. Tan, Yan & Kou, Chuanfu & E, Jiaqiang & Feng, Changlin & Han, Dandan, 2024. "Effect of different exhaust parameters on conversion efficiency enhancement of a Pd–Rh three-way catalytic converter for heavy-duty natural gas engines," Energy, Elsevier, vol. 292(C).
    10. Mingguang Zhang & Shuai Yu & Hongyi Li, 2023. "Inter-Zone Optimal Scheduling of Rural Wind–Biomass-Hydrogen Integrated Energy System," Energies, MDPI, vol. 16(17), pages 1-15, August.
    11. Tan, Yan & E, Jiaqiang & Kou, Chuanfu & Feng, Changlin & Han, Dandan, 2024. "Effects of critical structure parameters on conversion performance enhancement of a Pd–Rh dual-carrier catalytic converter for heavy-duty natural gas engines," Energy, Elsevier, vol. 303(C).
    12. Buffat, René & Raubal, Martin, 2019. "Spatio-temporal potential of a biogenic micro CHP swarm in Switzerland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 443-454.
    13. O'Shea, Richard & Lin, Richen & Wall, David M. & Browne, James D. & Murphy, Jerry D, 2020. "Using biogas to reduce natural gas consumption and greenhouse gas emissions at a large distillery," Applied Energy, Elsevier, vol. 279(C).
    14. Federica Cucchiella & Idiano D'Adamo & Massimo Gastaldi, 2017. "Biomethane: A Renewable Resource as Vehicle Fuel," Resources, MDPI, vol. 6(4), pages 1-13, October.
    15. Rajendran, Karthik & Browne, James D. & Murphy, Jerry D., 2019. "What is the level of incentivisation required for biomethane upgrading technologies with carbon capture and reuse?," Renewable Energy, Elsevier, vol. 133(C), pages 951-963.
    16. Zhang, Bin & Li, Xuewei & Tang, Shanhong & Wan, Qin & Jia, Guohai & Liu, Bo & Li, Shijun, 2023. "Effects analysis on hydrocarbon removal performance of an adsorptive catalytic gasoline particulate filter in the gasoline engine during cold start," Energy, Elsevier, vol. 283(C).
    17. Durusut, Emrah & Tahir, Foaad & Foster, Sam & Dineen, Denis & Clancy, Matthew, 2018. "BioHEAT: A policy decision support tool in Ireland’s bioenergy and heat sectors," Applied Energy, Elsevier, vol. 213(C), pages 306-321.
    18. Bose, Archishman & O'Shea, Richard & Lin, Richen & Long, Aoife & Rajendran, Karthik & Wall, David & De, Sudipta & Murphy, Jerry D., 2022. "The marginal abatement cost of co-producing biomethane, food and biofertiliser in a circular economy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    19. Zareei, Javad & Ghadamkheir, Kourosh & Farkhondeh, Seyed Alireza & Abed, Azher M. & Catalan Opulencia, Maria Jade & Nuñez Alvarez, José Ricardo, 2022. "Numerical investigation of hydrogen enriched natural gas effects on different characteristics of a SI engine with modified injection mechanism from port to direct injection," Energy, Elsevier, vol. 255(C).
    20. Horschig, Thomas & Adams, P.W.R. & Gawel, Erik & Thrän, Daniela, 2018. "How to decarbonize the natural gas sector: A dynamic simulation approach for the market development estimation of renewable gas in Germany," Applied Energy, Elsevier, vol. 213(C), pages 555-572.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:2072-:d:1636777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.