IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i8p3743-d1639051.html
   My bibliography  Save this article

How to Fit Energy Demand Under the Constraint of EU 2030 and FIT for 55 Goals: An Italian Case Study

Author

Listed:
  • Hamid Safarzadeh

    (LAR5 Laboratory, Dipartimento di Ingegneria, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy)

  • Francesco Di Maria

    (LAR5 Laboratory, Dipartimento di Ingegneria, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy)

Abstract

Replacing approximately 7,000,000 internal combustion vehicles by 2030 with battery electric vehicles (BEVs) and promoting renewable energy sources are among the main strategies for decreasing greenhouse gas emissions and pollution in urban areas proposed in the EU FIT 55 program. Increasing the number of BEVs will lead to an increase in the electrical energy demand, which, according to the FIT 55 program, will be mainly supplied by the exploitation of renewable energies. In the present study, several possible scenarios were investigated for supplying the electrical energy necessary for the 7,000,000 BEVs within the goals imposed by FIT 55. To address this objective, four scenarios were proposed and analyzed for Italy, paying attention to the renewable energy share imposed by the EU on this country. The scenarios were photovoltaic-based; wind based; nuclear power-based; and thermal resource-based. The results show that if the EU FIT 55 goals are realized and 20% of the current number of internal combustion vehicles are replaced by BEV ones, there will be an energy imbalance at different times of the day. In the first scenario, if photovoltaic resources are used to the maximum extent to address the energy deficit, a 5.5-fold increase in the number of solar panels is required compared to 2023. In the second scenario, a 2.6-fold increase in the number of existing wind turbines is estimated to be required. In the third scenario, the supply of the energy deficit from nuclear resources with the production of 8.5 kWh in the daily energy cycle is examined. The use of the BESS to store excess energy at certain hours of the day and during energy shortage hours has been examined, indicating that on average, based on different scenarios, a system with a minimum capacity of 24 gigawatts and a maximum of about 130 gigawatts will be required. The fourth scenario is also possible based on the Fit for 55 targets and the use of thermal resources. An increase of 10 to 25 gigawatts is visible in each scenario during peak energy production hours. Also, a comparison of the scenarios shows that the energy storage during the surplus hours of scenario 1 is much greater than in the other scenarios.

Suggested Citation

  • Hamid Safarzadeh & Francesco Di Maria, 2025. "How to Fit Energy Demand Under the Constraint of EU 2030 and FIT for 55 Goals: An Italian Case Study," Sustainability, MDPI, vol. 17(8), pages 1-19, April.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:8:p:3743-:d:1639051
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/8/3743/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/8/3743/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:8:p:3743-:d:1639051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.