IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3349-d1687964.html
   My bibliography  Save this article

CFD Modelling and Experimental Validation of an Ethanol Spark-Ignition Heavy-Duty Engine

Author

Listed:
  • Maria Cristina Cameretti

    (Department of Industrial Engineering, University of Naples Federico II, 80125 Naples, Italy)

  • Roberta De Robbio

    (Department of Industrial Engineering, University of Naples Federico II, 80125 Naples, Italy)

  • Raffaele Tuccillo

    (Department of Industrial Engineering, University of Naples Federico II, 80125 Naples, Italy)

  • Diego Perrone

    (Department of Mechanical, Energy and Management Engineering, University of Calabria, 87036 Cosenza, Italy)

  • Teresa Castiglione

    (Department of Mechanical, Energy and Management Engineering, University of Calabria, 87036 Cosenza, Italy)

Abstract

The activity of the present work is part of a research project aimed at proposing a solution for off-grid charging stations relying on the adoption of a reciprocating engine fuelled with alternative renewable fuels. This technology has as its main advantage the zero-carbon emissions impact of biofuels with small modifications to current ICE technology and refuelling infrastructure. This research is founded on preliminary experimental tests carried out on a six-cylinder spark-ignition engine adapted to pure ethanol fuelling with a single-point injection system. The experimental results obtained at different engine loads have been useful to build and validate a CFD model by testing several kinetic mechanisms and for the proper calibration of a flame speed model. Nevertheless, due to the chemical and physical properties of alcohols such as ethanol, this type of fuelling system leads to a significant non-uniformity of the mixture among the cylinders, and in some cases, to rich air-to-fuel ratio; numerical simulations are performed to address such an issue, and to evaluate performance and exhaust emissions, in terms of CO, CO 2 , and NO x . Finally, a study on spark timing variation is presented as well, to study its effect on performance and pollutants.

Suggested Citation

  • Maria Cristina Cameretti & Roberta De Robbio & Raffaele Tuccillo & Diego Perrone & Teresa Castiglione, 2025. "CFD Modelling and Experimental Validation of an Ethanol Spark-Ignition Heavy-Duty Engine," Energies, MDPI, vol. 18(13), pages 1-31, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3349-:d:1687964
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3349/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3349/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Catapano, Francesco & Di Iorio, Silvana & Magno, Agnese & Vaglieco, Bianca Maria, 2022. "Effect of fuel quality on combustion evolution and particle emissions from PFI and GDI engines fueled with gasoline, ethanol and blend, with focus on 10–23 nm particles," Energy, Elsevier, vol. 239(PB).
    2. Thakur, Amit Kumar & Kaviti, Ajay Kumar & Mehra, Roopesh & Mer, K.K.S., 2017. "Progress in performance analysis of ethanol-gasoline blends on SI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 324-340.
    3. Li, Xiaoyan & Zhen, Xudong & Wang, Yang & Tian, Zhi, 2022. "Numerical comparative study on performance and emissions characteristics fueled with methanol, ethanol and methane in high compression spark ignition engine," Energy, Elsevier, vol. 254(PA).
    4. Liu, Shang & Lin, Zhelong & Zhang, Hao & Fan, Qinhao & Lei, Nuo & Wang, Zhi, 2023. "Experimental study on combustion and emission characteristics of ethanol-gasoline blends in a high compression ratio SI engine," Energy, Elsevier, vol. 274(C).
    5. Henke, Ilaria & Cartenì, Armando & Beatrice, Carlo & Di Domenico, Davide & Marzano, Vittorio & Patella, Sergio Maria & Picone, Mariarosaria & Tocchi, Daniela & Cascetta, Ennio, 2024. "Fit for 2030? Possible scenarios of road transport demand, energy consumption and greenhouse gas emissions for Italy," Transport Policy, Elsevier, vol. 159(C), pages 67-82.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sathish Kumar, T. & Ashok, B. & Saravanan, B., 2023. "Calibration of flex-fuel operating parameters using grey relational analysis to enhance the output characteristics of ethanol powered direct injection SI engine," Energy, Elsevier, vol. 281(C).
    2. Yadav, Prem Shanker & Gautam, Raghvendra & Le, Thanh Tuan & Khandelwal, Neelam & Le, Anh Tuan & Hoang, Anh Tuan, 2024. "A comprehensive analysis of energy, exergy, performance, and emissions of a spark-ignition engine running on blends of gasoline, ethanol, and isoamyl alcohol," Energy, Elsevier, vol. 307(C).
    3. Ireneusz Pielecha & Zbigniew Stępień & Filip Szwajca & Grzegorz Kinal, 2022. "Effectiveness of Butanol and Deposit Control Additive in Fuel to Reduce Deposits of Gasoline Direct Injection Engine Injectors," Energies, MDPI, vol. 16(1), pages 1-18, December.
    4. Olga Orynycz & Gabriel Santos Rodrigues & João Gilberto Mendes dos Reis & Ewa Kulesza & Jonas Matijošius & Sivanilza Teixeira Machado, 2025. "Energy and Environmental Benefits of In-Motion Charging Trolleybuses: A Case Study of Vilnius," Energies, MDPI, vol. 18(12), pages 1-21, June.
    5. Lin, Zhelong & Liu, Shang & Qi, Yunliang & Chen, Qingchu & Wang, Zhi, 2024. "Experimental study on the performance of a high compression ratio SI engine using alcohol/ammonia fuel," Energy, Elsevier, vol. 289(C).
    6. Meng, Xianglong & Xie, Fangxi & Liu, Yu & Lai, Kaichang & Jiang, Xiaoxiao & Jiang, Beiping & Zhao, Jinghua & Dou, Huili, 2025. "Effect of dilution strategies on the performance and knocking in a spark induced compression ignition (SICI) engine for isopropanol-butanol-ethanol (IBE) blends," Energy, Elsevier, vol. 319(C).
    7. Galusnyak, Stefan Cristian & Petrescu, Letitia & Cormos, Calin-Cristian, 2022. "Classical vs. reactive distillation technologies for biodiesel production: An environmental comparison using LCA methodology," Renewable Energy, Elsevier, vol. 192(C), pages 289-299.
    8. Eduardo J. C. Cavalcanti & Daniel R. S. da Silva & Monica Carvalho, 2022. "Life Cycle and Exergoenvironmental Analyses of Ethanol: Performance of a Flex-Fuel Spark-Ignition Engine at Wide-Open Throttle Conditions," Energies, MDPI, vol. 15(4), pages 1-19, February.
    9. Han, Dandan & E, Jiaqiang & Deng, Yuanwang & Chen, Jingwei & Leng, Erwei & Liao, Gaoliang & Zhao, Xiaohuan & Feng, Changling & Zhang, Feng, 2021. "A review of studies using hydrocarbon adsorption material for reducing hydrocarbon emissions from cold start of gasoline engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Francesco Catapano & Silvana Di Iorio & Agnese Magno & Paolo Sementa & Bianca Maria Vaglieco, 2022. "Measurement of Sub-23 nm Particles Emitted from PFI/DI SI Engine Fueled with Oxygenated Fuels: A Comparison between Conventional and Novel Methodologies," Energies, MDPI, vol. 15(6), pages 1-14, March.
    11. Halis, Serdar & Kocakulak, Tolga, 2024. "RSM based optimization of lambda and mixed fuel concentration parameters of an LTC mode engine," Energy, Elsevier, vol. 306(C).
    12. Liu, Shang & Lin, Zhelong & Qi, Yunliang & Wang, Zhi & Yang, Dongsheng & Lu, Guoxiang & Wang, Bo, 2024. "Combustion and emission characteristics of a spark ignition engine fueled with ammonia/gasoline and pure ammonia," Applied Energy, Elsevier, vol. 369(C).
    13. Zhao, Wenbin & Mi, Shijie & Wu, Haoqing & Zhang, Yaoyuan & Zhang, Qiankun & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2022. "Towards a comprehensive understanding of mode transition between biodiesel-biobutanol dual-fuel ICCI low temperature combustion and conventional CI combustion – Part Ⅰ: Characteristics from medium to ," Energy, Elsevier, vol. 246(C).
    14. Zhang, Zhiyuan & Xu, Lei & Wei, Yidi & Ma, Yuguo & Feng, Huihua & Jia, Boru & He, Hongwen, 2025. "Zero-carbon and carbon neutral fuels applied on a linear range extender with multi-fuel adaptability," Energy, Elsevier, vol. 318(C).
    15. Chen, Zhanming & Zhang, Tiancong & Wang, Xiaochen & Chen, Hao & Geng, Limin & Zhang, Teng, 2021. "A comparative study of combustion performance and emissions of dual-fuel engines fueled with natural gas/methanol and natural gas/gasoline," Energy, Elsevier, vol. 237(C).
    16. Sundar Kamalesan Pillai & Udayakumar Rajamanickam & Shashank Khurana, 2023. "Impact of Diethyl Ether on Performance and Emission Characteristics of a VCR Diesel Engine Fueled by Dual Biodiesel," Energies, MDPI, vol. 16(13), pages 1-32, June.
    17. Meng, Xianglong & Xie, Fangxi & Liu, Yu & Yu, Zhenbo & Jiang, Yunfeng & Wang, Zhaoyu & Wang, Xiangyang & Jin, Zhaohui, 2025. "Effects of ammonia addition and variable valve timing on knocking and performance of ethanol pre-chamber engine with high compression ratio," Energy, Elsevier, vol. 327(C).
    18. Liu, Junheng & Liang, Wenwen & Ma, Haoran & Ji, Qian & Xiang, Pan & Sun, Ping & Wang, Pan & Wei, Mingliang & Ma, Hongjie, 2023. "Effects of integrated aftertreatment system on regulated and unregulated emission characteristics of non-road methanol/diesel dual-fuel engine," Energy, Elsevier, vol. 282(C).
    19. Zhang, Zhijian & Zhang, Lingyan & Wu, Shu, 2024. "Does ethanol-blended gasoline policy improve air quality in China?," Energy Economics, Elsevier, vol. 134(C).
    20. Meng, Xianglong & Xie, Fangxi & Liu, Yu & Li, Xiaoping & Jiang, Beiping & Li, Xiaona & Zhou, You, 2025. "Effects of isopropanol-n-butanol-ethanol blends on combustion and emissions performance in a spark assisted compression ignition (SACI) engine," Renewable Energy, Elsevier, vol. 244(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3349-:d:1687964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.