IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i7p1712-d1623451.html
   My bibliography  Save this article

Energy Hub Operation Under Uncertainty: Monte Carlo Risk Assessment Using Gaussian and KDE-Based Data

Author

Listed:
  • Spyros Giannelos

    (Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK)

  • Danny Pudjianto

    (Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK)

  • Tai Zhang

    (Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK)

  • Goran Strbac

    (Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK)

Abstract

Energy hubs integrating onsite renewable generation and battery storage provide cost-efficient solutions for meeting building electricity requirements. This study presents methods for modeling uncertainties in load demand and solar generation, ranging from normal distribution assumptions to distributions sourced from CityLearn 2.3.0. We also implement kernel density estimation (KDE) to represent the non-parametric distribution characteristics of actual data. Through Monte Carlo simulation, we emphasize the value of robust, data-driven methodologies in optimizing energy hub operations under realistic uncertainty conditions and effectively conducting risk assessment. The CityLearn real-world data confirms that the non-Gaussian nature of building-level energy demand and solar PV electricity output is most accurately represented through KDE, leading to more precise cost projections for the considered energy hub.

Suggested Citation

  • Spyros Giannelos & Danny Pudjianto & Tai Zhang & Goran Strbac, 2025. "Energy Hub Operation Under Uncertainty: Monte Carlo Risk Assessment Using Gaussian and KDE-Based Data," Energies, MDPI, vol. 18(7), pages 1-20, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1712-:d:1623451
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/7/1712/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/7/1712/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hariri, A. M. A. & Potts, C. N., 1989. "A branch and bound algorithm to minimize the number of late jobs in a permutation flow-shop," European Journal of Operational Research, Elsevier, vol. 38(2), pages 227-226, January.
    2. Àlex Alonso-Travesset & Helena Martín & Sergio Coronas & Jordi de la Hoz, 2022. "Optimization Models under Uncertainty in Distributed Generation Systems: A Review," Energies, MDPI, vol. 15(5), pages 1-40, March.
    3. Warut Pannakkong & Vu Thanh Vinh & Nguyen Ngoc Minh Tuyen & Jirachai Buddhakulsomsiri, 2023. "A Reinforcement Learning Approach for Ensemble Machine Learning Models in Peak Electricity Forecasting," Energies, MDPI, vol. 16(13), pages 1-20, July.
    4. Bunn, Derek W. & Oliveira, Fernando S., 2007. "Agent-based analysis of technological diversification and specialization in electricity markets," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1265-1278, September.
    5. K. Ramakrishna Kini & Fouzi Harrou & Muddu Madakyaru & Ying Sun, 2023. "Enhancing Wind Turbine Performance: Statistical Detection of Sensor Faults Based on Improved Dynamic Independent Component Analysis," Energies, MDPI, vol. 16(15), pages 1-25, August.
    6. J. N. Hooker, 2007. "Planning and Scheduling by Logic-Based Benders Decomposition," Operations Research, INFORMS, vol. 55(3), pages 588-602, June.
    7. Dong, Zihang & Zhang, Xi & Zhang, Linan & Giannelos, Spyros & Strbac, Goran, 2024. "Flexibility enhancement of urban energy systems through coordinated space heating aggregation of numerous buildings," Applied Energy, Elsevier, vol. 374(C).
    8. Spyros Giannelos & Alexandre Moreira & Dimitrios Papadaskalopoulos & Stefan Borozan & Danny Pudjianto & Ioannis Konstantelos & Mingyang Sun & Goran Strbac, 2023. "A Machine Learning Approach for Generating and Evaluating Forecasts on the Environmental Impact of the Buildings Sector," Energies, MDPI, vol. 16(6), pages 1-37, March.
    9. Antonio J. Conejo & Miguel Carrión & Juan M. Morales, 2010. "Decision Making Under Uncertainty in Electricity Markets," International Series in Operations Research and Management Science, Springer, number 978-1-4419-7421-1, June.
    10. Spyros Giannelos & Predrag Djapic & Danny Pudjianto & Goran Strbac, 2020. "Quantification of the Energy Storage Contribution to Security of Supply through the F-Factor Methodology," Energies, MDPI, vol. 13(4), pages 1-15, February.
    11. Leprince, Julien & Schledorn, Amos & Guericke, Daniela & Dominkovic, Dominik Franjo & Madsen, Henrik & Zeiler, Wim, 2023. "Can occupant behaviors affect urban energy planning? Distributed stochastic optimization for energy communities," Applied Energy, Elsevier, vol. 348(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tai Zhang & Goran Strbac, 2025. "Novel Artificial Intelligence Applications in Energy: A Systematic Review," Energies, MDPI, vol. 18(14), pages 1-51, July.
    2. Qirui Ding & Weicheng Cui, 2025. "Stochastic Biomechanical Modeling of Human-Powered Electricity Generation: A Comprehensive Framework with Advanced Monte Carlo Uncertainty Quantification," Energies, MDPI, vol. 18(18), pages 1-32, September.
    3. Spyros Giannelos, 2025. "Reinforcement Learning in Energy Finance: A Comprehensive Review," Energies, MDPI, vol. 18(11), pages 1-41, May.
    4. Mehrdad Ghahramani & Daryoush Habibi & Seyyedmorteza Ghamari & Hamid Soleimani & Asma Aziz, 2025. "Renewable-Based Isolated Power Systems: A Review of Scalability, Reliability, and Uncertainty Modeling," Clean Technol., MDPI, vol. 7(3), pages 1-37, September.
    5. Tai Zhang & Goran Strbac, 2025. "Artificial Intelligence Applications for Energy Storage: A Comprehensive Review," Energies, MDPI, vol. 18(17), pages 1-44, September.
    6. Naixuan Zhu & Guilian Wu & Hao Chen & Nuoling Sun, 2025. "Resilience Enhancement for Distribution Networks Under Typhoon-Induced Multi-Source Uncertainties," Energies, MDPI, vol. 18(13), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Spyros Giannelos, 2025. "Reinforcement Learning in Energy Finance: A Comprehensive Review," Energies, MDPI, vol. 18(11), pages 1-41, May.
    2. Tai Zhang & Goran Strbac, 2025. "Artificial Intelligence Applications for Energy Storage: A Comprehensive Review," Energies, MDPI, vol. 18(17), pages 1-44, September.
    3. Tai Zhang & Goran Strbac, 2025. "Novel Artificial Intelligence Applications in Energy: A Systematic Review," Energies, MDPI, vol. 18(14), pages 1-51, July.
    4. Spyros Giannelos & Stefan Borozan & Marko Aunedi & Xi Zhang & Hossein Ameli & Danny Pudjianto & Ioannis Konstantelos & Goran Strbac, 2023. "Modelling Smart Grid Technologies in Optimisation Problems for Electricity Grids," Energies, MDPI, vol. 16(13), pages 1-15, June.
    5. Spyros Giannelos & Tai Zhang & Danny Pudjianto & Ioannis Konstantelos & Goran Strbac, 2024. "Investments in Electricity Distribution Grids: Strategic versus Incremental Planning," Energies, MDPI, vol. 17(11), pages 1-13, June.
    6. Naderi, Bahman & Roshanaei, Vahid, 2020. "Branch-Relax-and-Check: A tractable decomposition method for order acceptance and identical parallel machine scheduling," European Journal of Operational Research, Elsevier, vol. 286(3), pages 811-827.
    7. Yasemin Merzifonluoglu & Eray Uzgoren, 2018. "Photovoltaic power plant design considering multiple uncertainties and risk," Annals of Operations Research, Springer, vol. 262(1), pages 153-184, March.
    8. Pandžić, Hrvoje & Kuzle, Igor & Capuder, Tomislav, 2013. "Virtual power plant mid-term dispatch optimization," Applied Energy, Elsevier, vol. 101(C), pages 134-141.
    9. Wang, Dongxiao & Qiu, Jing & Reedman, Luke & Meng, Ke & Lai, Loi Lei, 2018. "Two-stage energy management for networked microgrids with high renewable penetration," Applied Energy, Elsevier, vol. 226(C), pages 39-48.
    10. Sadeghian, Omid & Mohammadpour Shotorbani, Amin & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Risk-averse maintenance scheduling of generation units in combined heat and power systems with demand response," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    11. Christos N. Dimitriadis & Evangelos G. Tsimopoulos & Michael C. Georgiadis, 2021. "A Review on the Complementarity Modelling in Competitive Electricity Markets," Energies, MDPI, vol. 14(21), pages 1-27, November.
    12. Zhang, Hui & Cao, Libin & Zhang, Bing, 2017. "Emissions trading and technology adoption: An adaptive agent-based analysis of thermal power plants in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 23-32.
    13. Beata Pytlik & Daniel Smykowski & Piotr Szulc, 2022. "The Impact of Baffle Geometry in the PCM Heat Storage Unit on the Charging Process with High and Low Water Streams," Energies, MDPI, vol. 15(24), pages 1-17, December.
    14. Mohagheghi, Erfan & Gabash, Aouss & Alramlawi, Mansour & Li, Pu, 2018. "Real-time optimal power flow with reactive power dispatch of wind stations using a reconciliation algorithm," Renewable Energy, Elsevier, vol. 126(C), pages 509-523.
    15. Özgün Elçi & John Hooker, 2022. "Stochastic Planning and Scheduling with Logic-Based Benders Decomposition," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2428-2442, September.
    16. Grover-Silva, Etta & Heleno, Miguel & Mashayekh, Salman & Cardoso, Gonçalo & Girard, Robin & Kariniotakis, George, 2018. "A stochastic optimal power flow for scheduling flexible resources in microgrids operation," Applied Energy, Elsevier, vol. 229(C), pages 201-208.
    17. Gülpınar, N. & Oliveira, F.S., 2012. "Robust trading in spot and forward oligopolistic markets," International Journal of Production Economics, Elsevier, vol. 138(1), pages 35-45.
    18. Jaber Valinejad & Mousa Marzband & Michael Elsdon & Ameena Saad Al-Sumaiti & Taghi Barforoushi, 2019. "Dynamic Carbon-Constrained EPEC Model for Strategic Generation Investment Incentives with the Aim of Reducing CO 2 Emissions," Energies, MDPI, vol. 12(24), pages 1-35, December.
    19. Rushit Kansara & Loukas Kyriakidis & María Isabel Roldán Serrano, 2025. "Robust Quantum-Assisted Discrete Design of Industrial Smart Energy Utility Systems with Long-Term Operational Uncertainties: A Case Study of a Food and Cosmetic Industry in Germany," Energies, MDPI, vol. 18(16), pages 1-16, August.
    20. Hernán Gómez-Villarreal & Miguel Carrión & Ruth Domínguez, 2019. "Optimal Management of Combined-Cycle Gas Units with Gas Storage under Uncertainty," Energies, MDPI, vol. 13(1), pages 1-29, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1712-:d:1623451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.