IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i24p4813-d298980.html
   My bibliography  Save this article

Dynamic Carbon-Constrained EPEC Model for Strategic Generation Investment Incentives with the Aim of Reducing CO 2 Emissions

Author

Listed:
  • Jaber Valinejad

    (Bradley Department of Electrical Computer Engineering, Virginia Tech, Northern Virginia Center, Greater Washington, D.C., VA 22043, USA)

  • Mousa Marzband

    (Department of Maths, Physics and Electrical Engineering, Faculty of Engineering and Environment, Northumbria University Newcastle, Newcastle upon Tyne NE1 8ST, UK)

  • Michael Elsdon

    (Department of Maths, Physics and Electrical Engineering, Faculty of Engineering and Environment, Northumbria University Newcastle, Newcastle upon Tyne NE1 8ST, UK)

  • Ameena Saad Al-Sumaiti

    (Advanced Power and Energy Center, Electrical Engineering and Computer Science, Khalifa University, P.O. Box 127788, Abu Dhabi, UAE)

  • Taghi Barforoushi

    (Department of Electrical and Computer Engineering, Babol Noshirvaini University of Technology, Babol 4714871167, Iran)

Abstract

According to the European Union Emissions Trading Scheme, energy system planners are encouraged to consider the effects of greenhouse gases such as CO 2 in their short-term and long-term planning. A decrease in the carbon emissions produced by the power plant will result in a tax decrease. In view of this, the Dynamic carbon-constrained Equilibrium programming equilibrium constraints (DCC-EPEC) Framework is suggested to explore the effects of distinct market models on generation development planning (GEP) on electricity markets over a multi-period horizon. The investment incentives included in our model are the firm contract and capacity payment. The investment issue, which is regarded as a set of dominant producers in the oligopolistic market, is developed as an EPEC optimization problem to reduce carbon emissions. In the suggested DCC-EPEC model, the sum of the carbon emission tax and true social welfare are assumed as the objective function. Investment decisions and the strategic behavior of producers are included at the first level so as to maximize the overall profit of the investor over the scheduling period. The second-level issue is market-clearing, which is resolved by an independent system operator (ISO) to maximize social welfare. A real power network, as a case study, is provided to assess the suggested carbon-constrained EPEC framework. Simulations indicate that firm contracts and capacity payments can initiate the capacity expansion of different technologies to improve the long-term stability of the electricity market.

Suggested Citation

  • Jaber Valinejad & Mousa Marzband & Michael Elsdon & Ameena Saad Al-Sumaiti & Taghi Barforoushi, 2019. "Dynamic Carbon-Constrained EPEC Model for Strategic Generation Investment Incentives with the Aim of Reducing CO 2 Emissions," Energies, MDPI, vol. 12(24), pages 1-35, December.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4813-:d:298980
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/24/4813/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/24/4813/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Taheri, S. Saeid & Kazempour, Jalal & Seyedshenava, Seyedjalal, 2017. "Transmission expansion in an oligopoly considering generation investment equilibrium," Energy Economics, Elsevier, vol. 64(C), pages 55-62.
    2. Jaber Valinejad & Mousa Marzband & Mudathir Funsho Akorede & Ian D Elliott & Radu Godina & João Carlos de Oliveira Matias & Edris Pouresmaeil, 2018. "Long-Term Decision on Wind Investment with Considering Different Load Ranges of Power Plant for Sustainable Electricity Energy Market," Sustainability, MDPI, vol. 10(10), pages 1-19, October.
    3. Marzband, Mousa & Azarinejadian, Fatemeh & Savaghebi, Mehdi & Pouresmaeil, Edris & Guerrero, Josep M. & Lightbody, Gordon, 2018. "Smart transactive energy framework in grid-connected multiple home microgrids under independent and coalition operations," Renewable Energy, Elsevier, vol. 126(C), pages 95-106.
    4. Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
    5. Antonio J. Conejo & Miguel Carrión & Juan M. Morales, 2010. "Decision Making Under Uncertainty in Electricity Markets," International Series in Operations Research and Management Science, Springer, number 978-1-4419-7421-1, March.
    6. S. Siddiqui & S. Gabriel, 2013. "An SOS1-Based Approach for Solving MPECs with a Natural Gas Market Application," Networks and Spatial Economics, Springer, vol. 13(2), pages 205-227, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nazim Hajiyev & Klaudia Smoląg & Ali Abbasov & Valeriy Prasolov, 2020. "Energy War Strategies: The 21st Century Experience," Energies, MDPI, vol. 13(21), pages 1-15, November.
    2. Tumiran Tumiran & Lesnanto Multa Putranto & Roni Irnawan & Sarjiya Sarjiya & Candra Febri Nugraha & Adi Priyanto & Ira Savitri, 2022. "Power System Planning Assessment for Optimizing Renewable Energy Integration in the Maluku Electricity System," Sustainability, MDPI, vol. 14(14), pages 1-25, July.
    3. Rego, Erik Eduardo & Costa, Oswaldo L.V. & Ribeiro, Celma de Oliveira & Lima Filho, Roberto Ivo da R. & Takada, Hellinton & Stern, Julio, 2020. "The trade-off between demand growth and renewables: A multiperiod electricity planning model under CO2 emission constraints," Energy, Elsevier, vol. 213(C).
    4. Aryani, Morteza & Ahmadian, Mohammad & Sheikh-El-Eslami, Mohammad-Kazem, 2021. "Coordination of risk-based generation investments in conventional and renewable capacities in oligopolistic electricity markets: A robust regulatory tool," Energy, Elsevier, vol. 214(C).
    5. Majid Dehghani & Mohammad Taghipour & Saleh Sadeghi Gougheri & Amirhossein Nikoofard & Gevork B. Gharehpetian & Mahdi Khosravy, 2021. "A Deep Learning-Based Approach for Generation Expansion Planning Considering Power Plants Lifetime," Energies, MDPI, vol. 14(23), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paolo Falbo & Carlos Ruiz, 2021. "Joint optimization of sales-mix and generation plan for a large electricity producer," Papers 2110.02016, arXiv.org.
    2. Alizadeh, Ali & Kamwa, Innocent & Moeini, Ali & Mohseni-Bonab, Seyed Masoud, 2023. "Energy management in microgrids using transactive energy control concept under high penetration of Renewables; A survey and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    3. Falbo, Paolo & Ruiz, Carlos, 2019. "Optimal sales-mix and generation plan in a two-stage electricity market," Energy Economics, Elsevier, vol. 78(C), pages 598-614.
    4. Arsalan Najafi & Mousa Marzband & Behnam Mohamadi-Ivatloo & Javier Contreras & Mahdi Pourakbari-Kasmaei & Matti Lehtonen & Radu Godina, 2019. "Uncertainty-Based Models for Optimal Management of Energy Hubs Considering Demand Response," Energies, MDPI, vol. 12(8), pages 1-20, April.
    5. G. Constante-Flores & A. J. Conejo & S. Constante-Flores, 2022. "Solving certain complementarity problems in power markets via convex programming," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 465-491, October.
    6. David Pozo & Enzo Sauma & Javier Contreras, 2017. "Basic theoretical foundations and insights on bilevel models and their applications to power systems," Annals of Operations Research, Springer, vol. 254(1), pages 303-334, July.
    7. Nikoobakht, Ahmad & Aghaei, Jamshid & Khatami, Roohallah & Mahboubi-Moghaddam, Esmaeel & Parvania, Masood, 2019. "Stochastic flexible transmission operation for coordinated integration of plug-in electric vehicles and renewable energy sources," Applied Energy, Elsevier, vol. 238(C), pages 225-238.
    8. Jaber Valinejad & Mousa Marzband & Mudathir Funsho Akorede & Ian D Elliott & Radu Godina & João Carlos de Oliveira Matias & Edris Pouresmaeil, 2018. "Long-Term Decision on Wind Investment with Considering Different Load Ranges of Power Plant for Sustainable Electricity Energy Market," Sustainability, MDPI, vol. 10(10), pages 1-19, October.
    9. Md Shafiul Alam & Mohammad Ali Yousef Abido & Alaa El-Din Hussein & Ibrahim El-Amin, 2019. "Fault Ride through Capability Augmentation of a DFIG-Based Wind Integrated VSC-HVDC System with Non-Superconducting Fault Current Limiter," Sustainability, MDPI, vol. 11(5), pages 1-23, February.
    10. Lihui Zhang & He Xin & Zhinan Kan, 2019. "Sustainability Performance Evaluation of Hybrid Energy System Using an Improved Fuzzy Synthetic Evaluation Approach," Sustainability, MDPI, vol. 11(5), pages 1-19, February.
    11. Raheela Jamal & Baohui Men & Noor Habib Khan & Muhammad Asif Zahoor Raja, 2019. "Hybrid Bio-Inspired Computational Heuristic Paradigm for Integrated Load Dispatch Problems Involving Stochastic Wind," Energies, MDPI, vol. 12(13), pages 1-23, July.
    12. Yasemin Merzifonluoglu & Eray Uzgoren, 2018. "Photovoltaic power plant design considering multiple uncertainties and risk," Annals of Operations Research, Springer, vol. 262(1), pages 153-184, March.
    13. Pilar Lopez-Llompart & G. Mathias Kondolf, 2016. "Encroachments in floodways of the Mississippi River and Tributaries Project," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 513-542, March.
    14. Cheng, Jianquan & Bertolini, Luca, 2013. "Measuring urban job accessibility with distance decay, competition and diversity," Journal of Transport Geography, Elsevier, vol. 30(C), pages 100-109.
    15. M. De Donno & M. Pratelli, 2006. "A theory of stochastic integration for bond markets," Papers math/0602532, arXiv.org.
    16. Prilly Oktoviany & Robert Knobloch & Ralf Korn, 2021. "A machine learning-based price state prediction model for agricultural commodities using external factors," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 1063-1085, December.
    17. Michelle Sheran Sylvester, 2007. "The Career and Family Choices of Women: A Dynamic Analysis of Labor Force Participation, Schooling, Marriage and Fertility Decisions," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 10(3), pages 367-399, July.
    18. Henrekson, Magnus & Johansson, Dan, 2010. "Firm Growth, Institutions and Structural Transformation," Ratio Working Papers 150, The Ratio Institute.
    19. Karen K. Lewis, 2011. "Global Asset Pricing," Annual Review of Financial Economics, Annual Reviews, vol. 3(1), pages 435-466, December.
    20. DAVID M. BLAU & WILBERT van der KLAAUW, 2013. "What Determines Family Structure?," Economic Inquiry, Western Economic Association International, vol. 51(1), pages 579-604, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4813-:d:298980. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.