IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i16p4258-d1721748.html
   My bibliography  Save this article

Robust Quantum-Assisted Discrete Design of Industrial Smart Energy Utility Systems with Long-Term Operational Uncertainties: A Case Study of a Food and Cosmetic Industry in Germany

Author

Listed:
  • Rushit Kansara

    (German Aerospace Center, Institute for Low-Carbon Industrial Processes, Simulation and Virtual Design, Walther-Pauer-Straße 5, 03046 Cottbus, Germany)

  • Loukas Kyriakidis

    (German Aerospace Center, Institute for Low-Carbon Industrial Processes, Simulation and Virtual Design, Walther-Pauer-Straße 5, 03046 Cottbus, Germany)

  • María Isabel Roldán Serrano

    (German Aerospace Center, Institute for Low-Carbon Industrial Processes, Simulation and Virtual Design, Walther-Pauer-Straße 5, 03046 Cottbus, Germany)

Abstract

The industrial sector is a major contributor to energy-related CO 2 emissions in Europe, making the transition to renewable energy solutions essential. Decarbonization strategies integrate renewable energy sources, power-to-heat technologies, and energy storage systems into existing production sites to enhance sustainability and flexibility. However, a key challenge lies in designing energy systems that remain robust under long-term operational uncertainties. Usually the design of each energy system component is discrete, as it is manufactured in a predetermined size. Classical state-of-the-art coupled design and operational optimization methods are based on continuous design variables, which might give sub-optimal solutions. This study overcomes this limitation by employing novel, computationally efficient robust quantum-classical discrete-design methods. Traditional approaches often optimize operations for a single year due to the computational limitations of operational optimization algorithms, leading to designs that lack robustness. By incorporating long-term operational uncertainties, this approach ensures that selected energy-system configurations minimize both CO 2 emissions and costs while maintaining resilience to variations in weather conditions and demand fluctuations. Robust discrete designs which consider operational uncertainties show 12% less global warming impact (GWI) with 27% higher total annualized cost (TAC) compared to designs based on operational optimization without uncertainty. A novel quantum-assisted non-dominated sorting genetic algorithm (QANSGA-II) shows accuracy up to 90%, which leads to 27% less computational effort than the NSGA-II algorithm. This novel method can help industries to search larger and more optimal robust discrete-design spaces for making decarbonization decisions.

Suggested Citation

  • Rushit Kansara & Loukas Kyriakidis & María Isabel Roldán Serrano, 2025. "Robust Quantum-Assisted Discrete Design of Industrial Smart Energy Utility Systems with Long-Term Operational Uncertainties: A Case Study of a Food and Cosmetic Industry in Germany," Energies, MDPI, vol. 18(16), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4258-:d:1721748
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/16/4258/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/16/4258/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    2. Gabrielli, Paolo & Fürer, Florian & Mavromatidis, Georgios & Mazzotti, Marco, 2019. "Robust and optimal design of multi-energy systems with seasonal storage through uncertainty analysis," Applied Energy, Elsevier, vol. 238(C), pages 1192-1210.
    3. Mariusz Kaleta, 2025. "Robust Co-Optimization of Medium- and Short-Term Electrical Energy and Flexibility in Electricity Clusters," Energies, MDPI, vol. 18(3), pages 1-23, January.
    4. Ajagekar, Akshay & You, Fengqi, 2019. "Quantum computing for energy systems optimization: Challenges and opportunities," Energy, Elsevier, vol. 179(C), pages 76-89.
    5. Yang, Xiaohui & Chen, Zaixing & Huang, Xin & Li, Ruixin & Xu, Shaoping & Yang, Chunsheng, 2021. "Robust capacity optimization methods for integrated energy systems considering demand response and thermal comfort," Energy, Elsevier, vol. 221(C).
    6. Antonio J. Conejo & Miguel Carrión & Juan M. Morales, 2010. "Decision Making Under Uncertainty in Electricity Markets," International Series in Operations Research and Management Science, Springer, number 978-1-4419-7421-1, June.
    7. Zakaria, A. & Ismail, Firas B. & Lipu, M.S. Hossain & Hannan, M.A., 2020. "Uncertainty models for stochastic optimization in renewable energy applications," Renewable Energy, Elsevier, vol. 145(C), pages 1543-1571.
    8. Gorissen, Bram L. & Yanıkoğlu, İhsan & den Hertog, Dick, 2015. "A practical guide to robust optimization," Omega, Elsevier, vol. 53(C), pages 124-137.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moret, Stefano & Babonneau, Frédéric & Bierlaire, Michel & Maréchal, François, 2020. "Overcapacity in European power systems: Analysis and robust optimization approach," Applied Energy, Elsevier, vol. 259(C).
    2. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    3. Sun, Hao & Yang, Jun & Yang, Chao, 2019. "A robust optimization approach to multi-interval location-inventory and recharging planning for electric vehicles," Omega, Elsevier, vol. 86(C), pages 59-75.
    4. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    5. Liu, Jiejie & Li, Yao & Ma, Yanan & Qin, Ruomu & Meng, Xianyang & Wu, Jiangtao, 2023. "Two-layer multiple scenario optimization framework for integrated energy system based on optimal energy contribution ratio strategy," Energy, Elsevier, vol. 285(C).
    6. Shunichi Ohmori, 2021. "A Predictive Prescription Using Minimum Volume k -Nearest Neighbor Enclosing Ellipsoid and Robust Optimization," Mathematics, MDPI, vol. 9(2), pages 1-16, January.
    7. Guanglei Wang & Hassan Hijazi, 2018. "Mathematical programming methods for microgrid design and operations: a survey on deterministic and stochastic approaches," Computational Optimization and Applications, Springer, vol. 71(2), pages 553-608, November.
    8. Yan, Rujing & Wang, Jiangjiang & Wang, Jiahao & Tian, Lei & Tang, Saiqiu & Wang, Yuwei & Zhang, Jing & Cheng, Youliang & Li, Yuan, 2022. "A two-stage stochastic-robust optimization for a hybrid renewable energy CCHP system considering multiple scenario-interval uncertainties," Energy, Elsevier, vol. 247(C).
    9. Wang, Tian & Deng, Shiming, 2019. "Multi-Period energy procurement policies for smart-grid communities with deferrable demand and supplementary uncertain power supplies," Omega, Elsevier, vol. 89(C), pages 212-226.
    10. Jiang, Sheng-Long & Peng, Gongzhuang & Bogle, I. David L. & Zheng, Zhong, 2022. "Two-stage robust optimization approach for flexible oxygen distribution under uncertainty in integrated iron and steel plants," Applied Energy, Elsevier, vol. 306(PB).
    11. Viktoryia Buhayenko & Dick den Hertog, 2017. "Adjustable Robust Optimisation approach to optimise discounts for multi-period supply chain coordination under demand uncertainty," International Journal of Production Research, Taylor & Francis Journals, vol. 55(22), pages 6801-6823, November.
    12. Pejman Peykani & Roya Soltani & Cristina Tanasescu & Seyed Ehsan Shojaie & Alireza Jandaghian, 2025. "The Robust Malmquist Productivity Index: A Framework for Measuring Productivity Changes over Time Under Uncertainty," Mathematics, MDPI, vol. 13(11), pages 1-27, May.
    13. Wang, Shanshan & Mehrotra, Sanjay & Peng, Chun, 2025. "Robust concave utility maximization over chance constraints," European Journal of Operational Research, Elsevier, vol. 321(3), pages 800-813.
    14. Chassein, André & Goerigk, Marc, 2018. "Variable-sized uncertainty and inverse problems in robust optimization," European Journal of Operational Research, Elsevier, vol. 264(1), pages 17-28.
    15. Wang, Yu & Zhang, Yu & Tang, Jiafu, 2019. "A distributionally robust optimization approach for surgery block allocation," European Journal of Operational Research, Elsevier, vol. 273(2), pages 740-753.
    16. Ozmemis, Cagri & Balcik, Burcu & Yanıkoğlu, İhsan & Akca, Berna, 2025. "Integrated treatment scheduling and logistics planning for a hemodialysis center after a disaster with robust travel times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 198(C).
    17. Shin, Youngchul & Moon, Ilkyeong, 2023. "Robust building evacuation planning in a dynamic network flow model under collapsible nodes and arcs," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    18. Jianzhe Zhen & Dick den Hertog, 2018. "Computing the Maximum Volume Inscribed Ellipsoid of a Polytopic Projection," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 31-42, February.
    19. Pickering, Bryn & Choudhary, Ruchi, 2021. "Quantifying resilience in energy systems with out-of-sample testing," Applied Energy, Elsevier, vol. 285(C).
    20. Guo, Xiaotong & Caros, Nicholas S. & Zhao, Jinhua, 2021. "Robust matching-integrated vehicle rebalancing in ride-hailing system with uncertain demand," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 161-189.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4258-:d:1721748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.