IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i14p3747-d1702113.html
   My bibliography  Save this article

Novel Artificial Intelligence Applications in Energy: A Systematic Review

Author

Listed:
  • Tai Zhang

    (Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK)

  • Goran Strbac

    (Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK)

Abstract

This systematic review examines state-of-the-art artificial intelligence applications in energy systems, assessing their performance, real-world deployments and transformative potential. Guided by PRISMA 2020, we searched Web of Science, IEEE Xplore, ScienceDirect, SpringerLink, and Google Scholar for English-language studies published between January 2015 and January 2025 that reported novel AI uses in energy, empirical results, or significant theoretical advances and passed peer review. After title–abstract screening and full-text assessment, it was determined that 129 of 3000 records met the inclusion criteria. The methodological quality, reproducibility and real-world validation were appraised, and the findings were synthesised narratively around four critical themes: reinforcement learning (35 studies), multi-agent systems (28), planning under uncertainty (25), and AI for resilience (22), with a further 19 studies covering other areas. Notable outcomes include DeepMind-based reinforcement learning cutting data centre cooling energy by 40%, multi-agent control boosting virtual power plant revenue by 28%, AI-enhanced planning slashing the computation time by 87% without sacrificing solution quality, battery management AI raising efficiency by 30%, and machine learning accelerating hydrogen catalyst discovery 200,000-fold. Across domains, AI consistently outperformed traditional techniques. The review is limited by its English-only scope, potential under-representation of proprietary industrial work, and the inevitable lag between rapid AI advances and peer-reviewed publication. Overall, the evidence positions AI as a pivotal enabler of cleaner, more reliable, and efficient energy systems, though progress will depend on data quality, computational resources, legacy system integration, equity considerations, and interdisciplinary collaboration. No formal review protocol was registered because this study is a comprehensive state-of-the-art assessment rather than a clinical intervention analysis.

Suggested Citation

  • Tai Zhang & Goran Strbac, 2025. "Novel Artificial Intelligence Applications in Energy: A Systematic Review," Energies, MDPI, vol. 18(14), pages 1-51, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3747-:d:1702113
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/14/3747/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/14/3747/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Siddiqui, Afzal S. & Maribu, Karl, 2009. "Investment and upgrade in distributed generation under uncertainty," Energy Economics, Elsevier, vol. 31(1), pages 25-37, January.
    2. Spyros Giannelos & Tai Zhang & Danny Pudjianto & Ioannis Konstantelos & Goran Strbac, 2024. "Investments in Electricity Distribution Grids: Strategic versus Incremental Planning," Energies, MDPI, vol. 17(11), pages 1-13, June.
    3. Spyros Giannelos & Stefan Borozan & Marko Aunedi & Xi Zhang & Hossein Ameli & Danny Pudjianto & Ioannis Konstantelos & Goran Strbac, 2023. "Modelling Smart Grid Technologies in Optimisation Problems for Electricity Grids," Energies, MDPI, vol. 16(13), pages 1-15, June.
    4. Che, Xiahui & Zhu, Bangzhu & Wang, Ping, 2021. "Assessing global energy poverty: An integrated approach," Energy Policy, Elsevier, vol. 149(C).
    5. Abbas, Khizar & Butt, Khalid Manzoor & Xu, Deyi & Ali, Muhammad & Baz, Khan & Kharl, Sanwal Hussain & Ahmed, Mansoor, 2022. "Measurements and determinants of extreme multidimensional energy poverty using machine learning," Energy, Elsevier, vol. 251(C).
    6. O’Malley, Cormac & de Mars, Patrick & Badesa, Luis & Strbac, Goran, 2023. "Reinforcement learning and mixed-integer programming for power plant scheduling in low carbon systems: Comparison and hybridisation," Applied Energy, Elsevier, vol. 349(C).
    7. Giuseppe Piras & Francesco Muzi & Zahra Ziran, 2024. "Open Tool for Automated Development of Renewable Energy Communities: Artificial Intelligence and Machine Learning Techniques for Methodological Approach," Energies, MDPI, vol. 17(22), pages 1-16, November.
    8. Dong, Zihang & Zhang, Xi & Zhang, Linan & Giannelos, Spyros & Strbac, Goran, 2024. "Flexibility enhancement of urban energy systems through coordinated space heating aggregation of numerous buildings," Applied Energy, Elsevier, vol. 374(C).
    9. Spyros Giannelos & Stefan Borozan & Goran Strbac, 2022. "A Backwards Induction Framework for Quantifying the Option Value of Smart Charging of Electric Vehicles and the Risk of Stranded Assets under Uncertainty," Energies, MDPI, vol. 15(9), pages 1-22, May.
    10. Spyros Giannelos & Xi Zhang & Tai Zhang & Goran Strbac, 2024. "Multi-Objective Optimization for Pareto Frontier Sensitivity Analysis in Power Systems," Sustainability, MDPI, vol. 16(14), pages 1-17, July.
    11. Spyros Giannelos & Predrag Djapic & Danny Pudjianto & Goran Strbac, 2020. "Quantification of the Energy Storage Contribution to Security of Supply through the F-Factor Methodology," Energies, MDPI, vol. 13(4), pages 1-15, February.
    12. Giulia Palma & Leonardo Guiducci & Marta Stentati & Antonio Rizzo & Simone Paoletti, 2024. "Reinforcement Learning for Energy Community Management: A European-Scale Study," Energies, MDPI, vol. 17(5), pages 1-19, March.
    13. Vázquez-Canteli, José R. & Nagy, Zoltán, 2019. "Reinforcement learning for demand response: A review of algorithms and modeling techniques," Applied Energy, Elsevier, vol. 235(C), pages 1072-1089.
    14. Spyros Giannelos & Danny Pudjianto & Tai Zhang & Goran Strbac, 2025. "Energy Hub Operation Under Uncertainty: Monte Carlo Risk Assessment Using Gaussian and KDE-Based Data," Energies, MDPI, vol. 18(7), pages 1-20, March.
    15. Kingsley Ukoba & Kehinde O. Olatunji & Eyitayo Adeoye & Tien-Chien Jen & Daniel M. Madyira, 2024. "Optimizing renewable energy systems through artificial intelligence: Review and future prospects," Energy & Environment, , vol. 35(7), pages 3833-3879, November.
    16. Lu, Renzhi & Hong, Seung Ho, 2019. "Incentive-based demand response for smart grid with reinforcement learning and deep neural network," Applied Energy, Elsevier, vol. 236(C), pages 937-949.
    17. Aleksy Kwilinski & Oleksii Lyulyov & Tetyana Pimonenko, 2024. "Energy Poverty and Democratic Values: A European Perspective," Energies, MDPI, vol. 17(12), pages 1-23, June.
    18. Spyros Giannelos & Alexandre Moreira & Dimitrios Papadaskalopoulos & Stefan Borozan & Danny Pudjianto & Ioannis Konstantelos & Mingyang Sun & Goran Strbac, 2023. "A Machine Learning Approach for Generating and Evaluating Forecasts on the Environmental Impact of the Buildings Sector," Energies, MDPI, vol. 16(6), pages 1-37, March.
    19. Spyros Giannelos, 2025. "Reinforcement Learning in Energy Finance: A Comprehensive Review," Energies, MDPI, vol. 18(11), pages 1-41, May.
    20. Pallonetto, Fabiano & De Rosa, Mattia & Milano, Federico & Finn, Donal P., 2019. "Demand response algorithms for smart-grid ready residential buildings using machine learning models," Applied Energy, Elsevier, vol. 239(C), pages 1265-1282.
    21. Ghada Alturif & Wafaa Saleh & Alaa A. El-Bary & Alaa A. El-Bary & Radwa Ahmed Osman, 2024. "Using artificial intelligence tools to predict and alleviate poverty," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 12(2), pages 400-413, December.
    22. Tomasz Popławski & Sebastian Dudzik & Piotr Szeląg & Janusz Baran, 2021. "A Case Study of a Virtual Power Plant (VPP) as a Data Acquisition Tool for PV Energy Forecasting," Energies, MDPI, vol. 14(19), pages 1-24, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Spyros Giannelos, 2025. "Reinforcement Learning in Energy Finance: A Comprehensive Review," Energies, MDPI, vol. 18(11), pages 1-41, May.
    2. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    3. Spyros Giannelos & Danny Pudjianto & Tai Zhang & Goran Strbac, 2025. "Energy Hub Operation Under Uncertainty: Monte Carlo Risk Assessment Using Gaussian and KDE-Based Data," Energies, MDPI, vol. 18(7), pages 1-20, March.
    4. Ottavia Valentini & Nikoleta Andreadou & Paolo Bertoldi & Alexandre Lucas & Iolanda Saviuc & Evangelos Kotsakis, 2022. "Demand Response Impact Evaluation: A Review of Methods for Estimating the Customer Baseline Load," Energies, MDPI, vol. 15(14), pages 1-36, July.
    5. Lu, Renzhi & Li, Yi-Chang & Li, Yuting & Jiang, Junhui & Ding, Yuemin, 2020. "Multi-agent deep reinforcement learning based demand response for discrete manufacturing systems energy management," Applied Energy, Elsevier, vol. 276(C).
    6. Spyros Giannelos & Stefan Borozan & Marko Aunedi & Xi Zhang & Hossein Ameli & Danny Pudjianto & Ioannis Konstantelos & Goran Strbac, 2023. "Modelling Smart Grid Technologies in Optimisation Problems for Electricity Grids," Energies, MDPI, vol. 16(13), pages 1-15, June.
    7. Oleh Lukianykhin & Tetiana Bogodorova, 2021. "Voltage Control-Based Ancillary Service Using Deep Reinforcement Learning," Energies, MDPI, vol. 14(8), pages 1-22, April.
    8. Xu, Fangyuan & Zhu, Weidong & Wang, Yi Fei & Lai, Chun Sing & Yuan, Haoliang & Zhao, Yujia & Guo, Siming & Fu, Zhengxin, 2022. "A new deregulated demand response scheme for load over-shifting city in regulated power market," Applied Energy, Elsevier, vol. 311(C).
    9. Pinto, Giuseppe & Deltetto, Davide & Capozzoli, Alfonso, 2021. "Data-driven district energy management with surrogate models and deep reinforcement learning," Applied Energy, Elsevier, vol. 304(C).
    10. Seongwoo Lee & Joonho Seon & Byungsun Hwang & Soohyun Kim & Youngghyu Sun & Jinyoung Kim, 2024. "Recent Trends and Issues of Energy Management Systems Using Machine Learning," Energies, MDPI, vol. 17(3), pages 1-24, January.
    11. Yuxiang Xie & E. Xie, 2023. "Measuring and Analyzing the Welfare Effects of Energy Poverty in Rural China Based on a Multi-Dimensional Energy Poverty Index," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    12. Park, Keonwoo & Moon, Ilkyeong, 2022. "Multi-agent deep reinforcement learning approach for EV charging scheduling in a smart grid," Applied Energy, Elsevier, vol. 328(C).
    13. Máximo A. Domínguez-Garabitos & Víctor S. Ocaña-Guevara & Félix Santos-García & Adriana Arango-Manrique & Miguel Aybar-Mejía, 2022. "A Methodological Proposal for Implementing Demand-Shifting Strategies in the Wholesale Electricity Market," Energies, MDPI, vol. 15(4), pages 1-28, February.
    14. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    15. Charbonnier, Flora & Morstyn, Thomas & McCulloch, Malcolm D., 2022. "Coordination of resources at the edge of the electricity grid: Systematic review and taxonomy," Applied Energy, Elsevier, vol. 318(C).
    16. Philipp Wohlgenannt & Sebastian Hegenbart & Elias Eder & Mohan Kolhe & Peter Kepplinger, 2024. "Energy Demand Response in a Food-Processing Plant: A Deep Reinforcement Learning Approach," Energies, MDPI, vol. 17(24), pages 1-19, December.
    17. Spyros Giannelos & Tai Zhang & Danny Pudjianto & Ioannis Konstantelos & Goran Strbac, 2024. "Investments in Electricity Distribution Grids: Strategic versus Incremental Planning," Energies, MDPI, vol. 17(11), pages 1-13, June.
    18. Charbonnier, Flora & Peng, Bei & Vienne, Julie & Stai, Eleni & Morstyn, Thomas & McCulloch, Malcolm, 2025. "Centralised rehearsal of decentralised cooperation: Multi-agent reinforcement learning for the scalable coordination of residential energy flexibility," Applied Energy, Elsevier, vol. 377(PA).
    19. Lilia Tightiz & Joon Yoo, 2022. "A Review on a Data-Driven Microgrid Management System Integrating an Active Distribution Network: Challenges, Issues, and New Trends," Energies, MDPI, vol. 15(22), pages 1-24, November.
    20. Xie, Jiahan & Ajagekar, Akshay & You, Fengqi, 2023. "Multi-Agent attention-based deep reinforcement learning for demand response in grid-responsive buildings," Applied Energy, Elsevier, vol. 342(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3747-:d:1702113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.