IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i7p1654-d1620779.html
   My bibliography  Save this article

Evaluating the Potential and Limits of Green Electrolysis in Future Energy Scenarios with High Renewable Share

Author

Listed:
  • Angelica Liponi

    (Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, 56122 Pisa, Italy)

  • Gianluca Pasini

    (Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, 56122 Pisa, Italy)

  • Andrea Baccioli

    (Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, 56122 Pisa, Italy)

  • Lorenzo Ferrari

    (Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, 56122 Pisa, Italy)

Abstract

Water electrolysis is a potential contributor to global decarbonization, enhancing the flexibility and resilience of the electricity system and enabling integration with different sectors, such as industry and transportation, by acting as an energy vector and storage, as well as chemical feedstock. This study investigates the potential of hydrogen production by electrolysis in future national electric grid scenarios for Italy as a case study. It examines the impact of increasing photovoltaic and wind capacities up to five times the 2019 levels, considering an electricity storage capacity of up to 200 GWh. The feasibility of fully meeting current national hydrogen consumption through electrolysis in these scenarios is assessed by considering different overall electrolysis capacities. Specific CO 2 emissions associated with hydrogen production are evaluated as an indicator of environmental feasibility and compared with the conventional steam methane reforming. In addition, the levelized cost of hydrogen production is evaluated as an indicator of economic feasibility. Some limitations of electrolysis emerge when it is considered the sole way to decarbonize hydrogen production. Very high renewable shares are required to make electrolysis alone a feasible solution. Aiming to maximize the use of renewable curtailment for electrolysis conflicts with maximizing the electrolyzers’ utilization factor, thus, negatively affecting hydrogen production costs. Furthermore, since priority is given to the use of renewable and stored electricity to meet electricity demand, the remaining electricity is insufficient to produce the entire hydrogen demand in most of the considered scenarios, particularly when substantial storage supports the grid, as this reduces the curtailment available for electrolysis.

Suggested Citation

  • Angelica Liponi & Gianluca Pasini & Andrea Baccioli & Lorenzo Ferrari, 2025. "Evaluating the Potential and Limits of Green Electrolysis in Future Energy Scenarios with High Renewable Share," Energies, MDPI, vol. 18(7), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1654-:d:1620779
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/7/1654/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/7/1654/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Caumon, Pauline & Lopez-Botet Zulueta, Miguel & Louyrette, Jérémy & Albou, Sandrine & Bourasseau, Cyril & Mansilla, Christine, 2015. "Flexible hydrogen production implementation in the French power system: Expected impacts at the French and European levels," Energy, Elsevier, vol. 81(C), pages 556-562.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mikovits, Christian & Wetterlund, Elisabeth & Wehrle, Sebastian & Baumgartner, Johann & Schmidt, Johannes, 2021. "Stronger together: Multi-annual variability of hydrogen production supported by wind power in Sweden," Applied Energy, Elsevier, vol. 282(PB).
    2. Olfa Tlili & Christine Mansilla & Jochen Linβen & Markus Reuss & Thomas Grube & Martin Robinius & Jean André & Yannick Perez & Alain Le Duigou & Detlef Stolten, 2020. "Geospatial modelling of the hydrogen infrastructure in France in order to identify the most suited supply chains," Post-Print hal-02421359, HAL.
    3. Felgenhauer, Markus F. & Pellow, Matthew A. & Benson, Sally M. & Hamacher, Thomas, 2016. "Evaluating co-benefits of battery and fuel cell vehicles in a community in California," Energy, Elsevier, vol. 114(C), pages 360-368.
    4. Campíñez-Romero, Severo & Colmenar-Santos, Antonio & Pérez-Molina, Clara & Mur-Pérez, Francisco, 2018. "A hydrogen refuelling stations infrastructure deployment for cities supported on fuel cell taxi roll-out," Energy, Elsevier, vol. 148(C), pages 1018-1031.
    5. Tlili, Olfa & Mansilla, Christine & Robinius, Martin & Syranidis, Konstantinos & Reuss, Markus & Linssen, Jochen & André, Jean & Perez, Yannick & Stolten, Detlef, 2019. "Role of electricity interconnections and impact of the geographical scale on the French potential of producing hydrogen via electricity surplus by 2035," Energy, Elsevier, vol. 172(C), pages 977-990.
    6. Cany, Camille & Mansilla, Christine & da Costa, Pascal & Mathonnière, Gilles & Duquesnoy, Thierry & Baschwitz, Anne, 2016. "Nuclear and intermittent renewables: Two compatible supply options? The case of the French power mix," Energy Policy, Elsevier, vol. 95(C), pages 135-146.
    7. Speirs, Jamie & Balcombe, Paul & Johnson, Erin & Martin, Jeanne & Brandon, Nigel & Hawkes, Adam, 2018. "A greener gas grid: What are the options," Energy Policy, Elsevier, vol. 118(C), pages 291-297.
    8. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Homes of the future: Unpacking public perceptions to power the domestic hydrogen transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    9. Zhang, Tong & Qadrdan, Meysam & Wu, Jianzhong & Couraud, Benoit & Stringer, Martin & Walker, Sara & Hawkes, Adam & Allahham, Adib & Flynn, David & Pudjianto, Danny & Dodds, Paul & Strbac, Goran, 2025. "A systematic review of modelling methods for studying the integration of hydrogen into energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    10. Longoria, Genaro & Lynch, Muireann Á. & Devine, Mel & Curtis, John, 2022. "Model of strategic electrolysis firms in energy, ancillary services and hydrogen markets," Papers WP734, Economic and Social Research Institute (ESRI).
    11. Raillard--Cazanove, Quentin & Rogeau, Antoine & Girard, Robin, 2025. "Decarbonisation modelling for key industrial sectors focusing on process changes in a cost-optimised pathway," Applied Energy, Elsevier, vol. 382(C).
    12. Rahil, Abdulla & Gammon, Rupert & Brown, Neil, 2018. "Flexible operation of electrolyser at the garage forecourt to support grid balancing and exploitation of hydrogen as a clean fuel," Research in Transportation Economics, Elsevier, vol. 70(C), pages 125-138.
    13. Robinius, Martin & Raje, Tanmay & Nykamp, Stefan & Rott, Tobias & Müller, Martin & Grube, Thomas & Katzenbach, Burkhard & Küppers, Stefan & Stolten, Detlef, 2018. "Power-to-Gas: Electrolyzers as an alternative to network expansion – An example from a distribution system operator," Applied Energy, Elsevier, vol. 210(C), pages 182-197.
    14. Czylkowski, Dariusz & Hrycak, Bartosz & Jasiński, Mariusz & Dors, Mirosław & Mizeraczyk, Jerzy, 2016. "Microwave plasma-based method of hydrogen production via combined steam reforming of methane," Energy, Elsevier, vol. 113(C), pages 653-661.
    15. Li, Yanxue & Gao, Weijun & Ruan, Yingjun, 2019. "Potential and sensitivity analysis of long-term hydrogen production in resolving surplus RES generation—a case study in Japan," Energy, Elsevier, vol. 171(C), pages 1164-1172.
    16. Rahman, Jubeyer & Jacob, Roshni Anna & Zhang, Jie, 2025. "Multi-timescale power system operations for electrolytic hydrogen generation in integrated nuclear-renewable energy systems," Applied Energy, Elsevier, vol. 377(PA).
    17. González-Aparicio, I. & Kapetaki, Z. & Tzimas, E., 2018. "Wind energy and carbon dioxide utilisation as an alternative business model for energy producers: A case study in Spain," Applied Energy, Elsevier, vol. 222(C), pages 216-227.
    18. Blanco, Herib & Nijs, Wouter & Ruf, Johannes & Faaij, André, 2018. "Potential for hydrogen and Power-to-Liquid in a low-carbon EU energy system using cost optimization," Applied Energy, Elsevier, vol. 232(C), pages 617-639.
    19. Abdulla Rahil & Rupert Gammon, 2017. "Dispatchable Hydrogen Production at the Forecourt for Electricity Demand Shaping," Sustainability, MDPI, vol. 9(10), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1654-:d:1620779. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.