IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i6p1545-d1616579.html
   My bibliography  Save this article

Assessing the Sustainability of Electric and Hybrid Buses: A Life Cycle Assessment Approach to Energy Consumption in Usage

Author

Listed:
  • Xiao Li

    (Faculty of Architecture, Civil Engineering and Transport Sciences, Széchenyi István University, Egyetem tér 1, 9026 Győr, Hungary)

  • Balázs Horváth

    (Faculty of Architecture, Civil Engineering and Transport Sciences, Széchenyi István University, Egyetem tér 1, 9026 Győr, Hungary)

  • Ágoston Winkler

    (Faculty of Architecture, Civil Engineering and Transport Sciences, Széchenyi István University, Egyetem tér 1, 9026 Győr, Hungary)

Abstract

The global adoption of battery electric vehicles (EVs) and hybrid electric vehicles (HEVs) as a substitute for internal combustion engine cars (ICEs) in various nations offers a substantial opportunity to reduce carbon dioxide (CO 2 ) emissions from land transportation. EVs are fitted with an energy conversion system that efficiently converts stored energy into propulsion, referred to as “tank-to-wheel (TTW) conversion”. Battery-electric vehicles have a significant advantage in that their exhaust system does not produce any pollutants. This hypothesis is equally relevant to public transport. Despite their higher upfront cost, electric buses contribute significantly to environmental sustainability during their operation. This study aimed to evaluate the environmental sustainability of electric buses during their operational phase by utilizing the life cycle assessment (LCA) technique. This paper used the MATLAB R2021b code to ascertain the mean load of the buses during their operation. The energy consumption of battery electric and hybrid electric buses was evaluated using the WLTP Class 2 standard, which refers to vehicles with a power-to-mass ratio between 22 and 34 W/kg, overing four speed phases (low, medium, high, extra high) with speeds up to 131.3 km/h. The code was used to calculate the energy consumption levels for the complete test cycle. The code adopts an idealized rectangular blind box model, disregarding the intricate design of contemporary buses to streamline the computational procedure. Simulating realistic test periods of 1800 s resulted in an average consumption of 1.451 kWh per km for electric buses and an average of 25.3 L per 100 km for hybrid buses. Finally, through an examination of the structure of the Hungarian power system utilization, it was demonstrated that electrification is a more appropriate method for achieving the emission reduction goals during the utilization phase.

Suggested Citation

  • Xiao Li & Balázs Horváth & Ágoston Winkler, 2025. "Assessing the Sustainability of Electric and Hybrid Buses: A Life Cycle Assessment Approach to Energy Consumption in Usage," Energies, MDPI, vol. 18(6), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1545-:d:1616579
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/6/1545/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/6/1545/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rahman, Md. Mustafizur & Canter, Christina & Kumar, Amit, 2015. "Well-to-wheel life cycle assessment of transportation fuels derived from different North American conventional crudes," Applied Energy, Elsevier, vol. 156(C), pages 159-173.
    2. Kretschmer, Bettina & Narita, Daiju & Peterson, Sonja, 2009. "The economic effects of the EU biofuel target," Open Access Publications from Kiel Institute for the World Economy 32984, Kiel Institute for the World Economy (IfW Kiel).
    3. Hatem Abdelaty & Moataz Mohamed, 2021. "A Prediction Model for Battery Electric Bus Energy Consumption in Transit," Energies, MDPI, vol. 14(10), pages 1-26, May.
    4. Pavlovic, Jelica & Marotta, Alessandro & Ciuffo, Biagio, 2016. "CO2 emissions and energy demands of vehicles tested under the NEDC and the new WLTP type approval test procedures," Applied Energy, Elsevier, vol. 177(C), pages 661-670.
    5. Ali Saadon Al-Ogaili & Ali Q. Al-Shetwi & Hussein M. K. Al-Masri & Thanikanti Sudhakar Babu & Yap Hoon & Khaled Alzaareer & N. V. Phanendra Babu, 2021. "Review of the Estimation Methods of Energy Consumption for Battery Electric Buses," Energies, MDPI, vol. 14(22), pages 1-28, November.
    6. Liddle, Brantley & Sadorsky, Perry, 2017. "How much does increasing non-fossil fuels in electricity generation reduce carbon dioxide emissions?," Applied Energy, Elsevier, vol. 197(C), pages 212-221.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Foda, Ahmed & Abdelaty, Hatem & Mohamed, Moataz & El-Saadany, Ehab, 2023. "A generic cost-utility-emission optimization for electric bus transit infrastructure planning and charging scheduling," Energy, Elsevier, vol. 277(C).
    2. Lim, Lek Keng & Muis, Zarina Ab & Ho, Wai Shin & Hashim, Haslenda & Bong, Cassendra Phun Chien, 2023. "Review of the energy forecasting and scheduling model for electric buses," Energy, Elsevier, vol. 263(PD).
    3. Chiaramonti, David & Goumas, Theodor, 2019. "Impacts on industrial-scale market deployment of advanced biofuels and recycled carbon fuels from the EU Renewable Energy Directive II," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Argueyrolles, Robin & Delzeit, Ruth, 2022. "The interconnections between Fossil Fuel Subsidy Reforms and biofuels," Conference papers 333492, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    5. Tol, Richard S.J., 2012. "A cost–benefit analysis of the EU 20/20/2020 package," Energy Policy, Elsevier, vol. 49(C), pages 288-295.
    6. Ragab El-Sehiemy & Mohamed A. Hamida & Ehab Elattar & Abdullah Shaheen & Ahmed Ginidi, 2022. "Nonlinear Dynamic Model for Parameter Estimation of Li-Ion Batteries Using Supply–Demand Algorithm," Energies, MDPI, vol. 15(13), pages 1-20, June.
    7. Hadi Tannous & Valentina Stojceska & Savas A. Tassou, 2023. "The Use of Solar Thermal Heating in SPIRE and Non-SPIRE Industrial Processes," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
    8. Brantley Liddle, 2024. "To What Extent Do Alternative Energy Sources Displace Coal and Oil in Electricity Generation? A Mean-Group Panel Analysis," Sustainability, MDPI, vol. 16(13), pages 1-11, June.
    9. Xinglong Liu & Fuquan Zhao & Han Hao & Kangda Chen & Zongwei Liu & Hassan Babiker & Amer Ahmad Amer, 2020. "From NEDC to WLTP: Effect on the Energy Consumption, NEV Credits, and Subsidies Policies of PHEV in the Chinese Market," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    10. Tolgahan Kaya & Osman Akın Kutlar & Ozgur Oguz Taskiran, 2018. "Evaluation of the Effects of Biodiesel on Emissions and Performance by Comparing the Results of the New European Drive Cycle and Worldwide Harmonized Light Vehicles Test Cycle," Energies, MDPI, vol. 11(10), pages 1-14, October.
    11. Qiu, Cheng & Colson, Gregory & Wetzstein, Michael, 2014. "An ethanol blend wall shift is prone to increase petroleum gasoline demand," Energy Economics, Elsevier, vol. 44(C), pages 160-165.
    12. Michael Bohm & Josef Stetina & David Svida, 2022. "Exhaust Gas Temperature Pulsations of a Gasoline Engine and Its Stabilization Using Thermal Energy Storage System to Reduce Emissions," Energies, MDPI, vol. 15(7), pages 1-16, March.
    13. Kangda Chen & Fuquan Zhao & Xinglong Liu & Han Hao & Zongwei Liu, 2021. "Impacts of the New Worldwide Light-Duty Test Procedure on Technology Effectiveness and China’s Passenger Vehicle Fuel Consumption Regulations," IJERPH, MDPI, vol. 18(6), pages 1-20, March.
    14. Li, Wei & Lu, Can & Zhang, Yan-Wu, 2019. "Prospective exploration of future renewable portfolio standard schemes in China via a multi-sector CGE model," Energy Policy, Elsevier, vol. 128(C), pages 45-56.
    15. Pirjola, Liisa & Kuuluvainen, Heino & Timonen, Hilkka & Saarikoski, Sanna & Teinilä, Kimmo & Salo, Laura & Datta, Arindam & Simonen, Pauli & Karjalainen, Panu & Kulmala, Kari & Rönkkö, Topi, 2019. "Potential of renewable fuel to reduce diesel exhaust particle emissions," Applied Energy, Elsevier, vol. 254(C).
    16. AlSabbagh, Maha & Siu, Yim Ling & Guehnemann, Astrid & Barrett, John, 2017. "Integrated approach to the assessment of CO2e-mitigation measures for the road passenger transport sector in Bahrain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 203-215.
    17. Elham Ziar & Mehdi Seifbarghy & Mahdi Bashiri & Benny Tjahjono, 2023. "An efficient environmentally friendly transportation network design via dry ports: a bi-level programming approach," Annals of Operations Research, Springer, vol. 322(2), pages 1143-1166, March.
    18. Peter Tauš & Martin Beer, 2022. "Evaluation of the Hydropower Potential of the Torysa River and Its Energy Use in the Process of Reducing Energy Poverty of Local Communities," Energies, MDPI, vol. 15(10), pages 1-15, May.
    19. Moretti, Christian & Moro, Alberto & Edwards, Robert & Rocco, Matteo Vincenzo & Colombo, Emanuela, 2017. "Analysis of standard and innovative methods for allocating upstream and refinery GHG emissions to oil products," Applied Energy, Elsevier, vol. 206(C), pages 372-381.
    20. Winchester, Niven & Malina, Robert & Staples, Mark D. & Barrett, Steven R.H., 2015. "The impact of advanced biofuels on aviation emissions and operations in the U.S," Energy Economics, Elsevier, vol. 49(C), pages 482-491.

    More about this item

    Keywords

    LCA; electric bus; hybrid bus; energy; BEV;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1545-:d:1616579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.